YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Biobased Polyurethane: A Sustainable Asphalt Modifier with Improved Moisture Resistance

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 001::page 04023505-1
    Author:
    Mohammadjavad Kazemi
    ,
    Amirhossein Karimi
    ,
    Ahmad Goli
    ,
    Pouria Hajikarimi
    ,
    Abbas Mohammadi
    ,
    Amirhossein Doctorsafaei
    ,
    Elham Fini
    DOI: 10.1061/JMCEE7.MTENG-16489
    Publisher: ASCE
    Abstract: This paper evaluated the effect of a biobased polyurethane modifier on the moisture resistance of asphalt binder. Biomodifiers with high acid values have been implicated in moisture damage to asphalt. Here, castor oil with a relatively high acid value of 190  mg KOH·g−1 was used to produce biobased polyurethane. Biobased polyurethane was produced by combining castor oil, toluene diisocyanate (TDI), and diethylene glycol (DEG) at a molar ratio of 1∶2∶1. Asphalt binder was modified with 3%, 6%, or 9% of the biobased polyurethane (by weight of asphalt binder), and the moisture susceptibility of the modified asphalt was evaluated with a comprehensive laboratory experiment plan using the boiling water test, the indirect tensile strength test, the bitumen bond strength test, the water contact-angle moisture-susceptibility test, and the moisture-induced shear-thinning index test. Study results showed that the introduction of biobased polyurethane enhanced the bond between the aggregate and asphalt, thereby increasing the asphalt mixture’s resistance to moisture damage. Consequently, the resistance of asphalt binders to cohesive failure and adhesive failure was enhanced in biobased polyurethane, as evidenced by respective increases of 19%, 40%, and 49% in tensile strength ratio for dosages of 3%, 6%, and 9% biobased polyurethane. Compared with neat asphalt, the asphalt blend containing 9% polyurethane had the highest bond-strength increases, 55.73% and 37.93%, for dry and wet conditions, respectively. This improvement is attributable to the phenol and amide components in biobased polyurethane, which increase the polarity of asphalt binder and increase the affinity of asphalt binder to siliceous aggregate. In addition, the moisture-induced shear-thinning index and the contact-angle moisture-susceptibility index showed that increased doses of biobased polyurethane resulted in increased resistance of asphalt to moisture damage. The study outcomes promote the sustainability of asphalt construction by introducing biobased polyurethane as a sustainable modifier for asphalt.
    • Download: (1.211Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Biobased Polyurethane: A Sustainable Asphalt Modifier with Improved Moisture Resistance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297907
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorMohammadjavad Kazemi
    contributor authorAmirhossein Karimi
    contributor authorAhmad Goli
    contributor authorPouria Hajikarimi
    contributor authorAbbas Mohammadi
    contributor authorAmirhossein Doctorsafaei
    contributor authorElham Fini
    date accessioned2024-04-27T22:56:57Z
    date available2024-04-27T22:56:57Z
    date issued2024/01/01
    identifier other10.1061-JMCEE7.MTENG-16489.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297907
    description abstractThis paper evaluated the effect of a biobased polyurethane modifier on the moisture resistance of asphalt binder. Biomodifiers with high acid values have been implicated in moisture damage to asphalt. Here, castor oil with a relatively high acid value of 190  mg KOH·g−1 was used to produce biobased polyurethane. Biobased polyurethane was produced by combining castor oil, toluene diisocyanate (TDI), and diethylene glycol (DEG) at a molar ratio of 1∶2∶1. Asphalt binder was modified with 3%, 6%, or 9% of the biobased polyurethane (by weight of asphalt binder), and the moisture susceptibility of the modified asphalt was evaluated with a comprehensive laboratory experiment plan using the boiling water test, the indirect tensile strength test, the bitumen bond strength test, the water contact-angle moisture-susceptibility test, and the moisture-induced shear-thinning index test. Study results showed that the introduction of biobased polyurethane enhanced the bond between the aggregate and asphalt, thereby increasing the asphalt mixture’s resistance to moisture damage. Consequently, the resistance of asphalt binders to cohesive failure and adhesive failure was enhanced in biobased polyurethane, as evidenced by respective increases of 19%, 40%, and 49% in tensile strength ratio for dosages of 3%, 6%, and 9% biobased polyurethane. Compared with neat asphalt, the asphalt blend containing 9% polyurethane had the highest bond-strength increases, 55.73% and 37.93%, for dry and wet conditions, respectively. This improvement is attributable to the phenol and amide components in biobased polyurethane, which increase the polarity of asphalt binder and increase the affinity of asphalt binder to siliceous aggregate. In addition, the moisture-induced shear-thinning index and the contact-angle moisture-susceptibility index showed that increased doses of biobased polyurethane resulted in increased resistance of asphalt to moisture damage. The study outcomes promote the sustainability of asphalt construction by introducing biobased polyurethane as a sustainable modifier for asphalt.
    publisherASCE
    titleBiobased Polyurethane: A Sustainable Asphalt Modifier with Improved Moisture Resistance
    typeJournal Article
    journal volume36
    journal issue1
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16489
    journal fristpage04023505-1
    journal lastpage04023505-12
    page12
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian