YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Concrete Incorporating Recycled Plastic Aggregates: Physical and Mechanical Properties and Predictive Models

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006::page 04024138-1
    Author:
    Beibei Xiong
    ,
    Devid Falliano
    ,
    Luciana Restuccia
    ,
    Fabio Di Trapani
    ,
    Cristoforo Demartino
    ,
    Giuseppe Carlo Marano
    DOI: 10.1061/JMCEE7.MTENG-16483
    Publisher: ASCE
    Abstract: This paper presents a pilot study on the characterization of the physical and mechanical properties of a novel green concrete with two different substituted recycled plastic aggregates. A reference mix with an average compressive strength of around 60 MPa is considered. Recycled polyethylene terephthalate (PET) powder and recycled mixed plastic [polypropylene (PP) and polyethylene (PE)] granules were adopted to substitute fine and coarse aggregates. Two different substitution strategies were employed. In the first one, the PET powder is used to substitute the fine sand by volume. In the second one, the PET powder is used to substitute the fine sand while the recycled mixed plastic granules are used to substitute the coarse sand and fine coarse aggregates by volume (50% for PET powder and 50% for recycled mixed plastic granules). Four total replacement levels (5%, 10%, 20%, and 30%) by volume were considered. The fresh concrete properties (slump and density), compressive and flexural behavior, toughness, and permeability are investigated. Finally, a microscale characterization of the plastic-paste interface is provided. An interpretation of the test results of this study by comparing them with the findings of previous studies is provided, along with the provision of two predictive equations for the compressive and flexural strength reduction factors. Results show reduced flowability for PET cases due to particle shape, slight compressive strength reduction at low substitutions, improved flexural strength at low levels, decreased permeability, and microscale enhancements. The comprehensive evaluation indicates promising physical and mechanical performance of the novel green concrete.
    • Download: (8.486Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Concrete Incorporating Recycled Plastic Aggregates: Physical and Mechanical Properties and Predictive Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297905
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorBeibei Xiong
    contributor authorDevid Falliano
    contributor authorLuciana Restuccia
    contributor authorFabio Di Trapani
    contributor authorCristoforo Demartino
    contributor authorGiuseppe Carlo Marano
    date accessioned2024-04-27T22:56:55Z
    date available2024-04-27T22:56:55Z
    date issued2024/06/01
    identifier other10.1061-JMCEE7.MTENG-16483.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297905
    description abstractThis paper presents a pilot study on the characterization of the physical and mechanical properties of a novel green concrete with two different substituted recycled plastic aggregates. A reference mix with an average compressive strength of around 60 MPa is considered. Recycled polyethylene terephthalate (PET) powder and recycled mixed plastic [polypropylene (PP) and polyethylene (PE)] granules were adopted to substitute fine and coarse aggregates. Two different substitution strategies were employed. In the first one, the PET powder is used to substitute the fine sand by volume. In the second one, the PET powder is used to substitute the fine sand while the recycled mixed plastic granules are used to substitute the coarse sand and fine coarse aggregates by volume (50% for PET powder and 50% for recycled mixed plastic granules). Four total replacement levels (5%, 10%, 20%, and 30%) by volume were considered. The fresh concrete properties (slump and density), compressive and flexural behavior, toughness, and permeability are investigated. Finally, a microscale characterization of the plastic-paste interface is provided. An interpretation of the test results of this study by comparing them with the findings of previous studies is provided, along with the provision of two predictive equations for the compressive and flexural strength reduction factors. Results show reduced flowability for PET cases due to particle shape, slight compressive strength reduction at low substitutions, improved flexural strength at low levels, decreased permeability, and microscale enhancements. The comprehensive evaluation indicates promising physical and mechanical performance of the novel green concrete.
    publisherASCE
    titleConcrete Incorporating Recycled Plastic Aggregates: Physical and Mechanical Properties and Predictive Models
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16483
    journal fristpage04024138-1
    journal lastpage04024138-22
    page22
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian