YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantification of Desiccation Cracking and Strain Localization in Lime-Treated Compacted Expansive Soils Using DIA and DIC

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002::page 04023541-1
    Author:
    Brijesh Kumar Agarwal
    ,
    Ajanta Sachan
    DOI: 10.1061/JMCEE7.MTENG-16352
    Publisher: ASCE
    Abstract: The present experimental study is focused on quantifying the initiation and propagation of desiccation cracking and strain localization in lime-treated compacted expansive soils subjected to controlled temperature and relative humidity conditions. Two bench-scale experimental setups were designed and developed in this study to capture the desiccation cracking and strain localization in soil specimens using digital image processing (DIA) and digital image correlation (DIC) techniques, respectively. A Python program was also developed for autodetection of optimum threshold intensity for crack segmentation, which considerably reduced the chances of noise in DIA and allowed accurate batch processing of multiple images. An open-source software Ncorr was used for two-dimensional DIC analysis to obtain strain localization plots during the desiccation process of soil. The effectiveness of the lime treatment technique for the stabilization of expansive soil was evaluated by considering the major issues of expansive soils such as swelling, shrinkage, unconfined compressive (UC) strength, and desiccation cracking. The results revealed that the lime treatment was ineffective in controlling the desiccation cracking of expansive soil. Only a small percentage of lime (2% or less) was found to slightly reduce the desiccation cracking. However, such small quantities of lime were not found enough to fully sway the swelling and shrinkage nature of the soil. A significant change in the crack pattern was observed in specimens treated with 3% or higher amount of lime. The total length of cracks increased up to 75% due to the addition of 6% lime compared with untreated soil. Similarly, more localized deformation zones were observed in strain localization plots of specimens treated with 3% or higher amounts of lime.
    • Download: (7.897Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantification of Desiccation Cracking and Strain Localization in Lime-Treated Compacted Expansive Soils Using DIA and DIC

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297867
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorBrijesh Kumar Agarwal
    contributor authorAjanta Sachan
    date accessioned2024-04-27T22:56:07Z
    date available2024-04-27T22:56:07Z
    date issued2024/02/01
    identifier other10.1061-JMCEE7.MTENG-16352.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297867
    description abstractThe present experimental study is focused on quantifying the initiation and propagation of desiccation cracking and strain localization in lime-treated compacted expansive soils subjected to controlled temperature and relative humidity conditions. Two bench-scale experimental setups were designed and developed in this study to capture the desiccation cracking and strain localization in soil specimens using digital image processing (DIA) and digital image correlation (DIC) techniques, respectively. A Python program was also developed for autodetection of optimum threshold intensity for crack segmentation, which considerably reduced the chances of noise in DIA and allowed accurate batch processing of multiple images. An open-source software Ncorr was used for two-dimensional DIC analysis to obtain strain localization plots during the desiccation process of soil. The effectiveness of the lime treatment technique for the stabilization of expansive soil was evaluated by considering the major issues of expansive soils such as swelling, shrinkage, unconfined compressive (UC) strength, and desiccation cracking. The results revealed that the lime treatment was ineffective in controlling the desiccation cracking of expansive soil. Only a small percentage of lime (2% or less) was found to slightly reduce the desiccation cracking. However, such small quantities of lime were not found enough to fully sway the swelling and shrinkage nature of the soil. A significant change in the crack pattern was observed in specimens treated with 3% or higher amount of lime. The total length of cracks increased up to 75% due to the addition of 6% lime compared with untreated soil. Similarly, more localized deformation zones were observed in strain localization plots of specimens treated with 3% or higher amounts of lime.
    publisherASCE
    titleQuantification of Desiccation Cracking and Strain Localization in Lime-Treated Compacted Expansive Soils Using DIA and DIC
    typeJournal Article
    journal volume36
    journal issue2
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-16352
    journal fristpage04023541-1
    journal lastpage04023541-19
    page19
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian