YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity Analysis of AquaCrop Model for Winter Wheat in Different Water Supply Conditions

    Source: Journal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 002::page 04024002-1
    Author:
    Ali Heydar Nasrolahi
    ,
    Mohsen Ahmadee
    ,
    Rabee Rustum
    DOI: 10.1061/JIDEDH.IRENG-10099
    Publisher: ASCE
    Abstract: AquaCrop, a water-driven model, has been developed to simulate the response of crops, including wheat, to the amount of irrigation water. To estimate crop yield using this model, the calibration stage is applied first, employing the available data. Calibration accuracy guarantees the validation accuracy of this model. For this reason, before the calibration stage, the response of the AquaCrop model to changes in input parameters is investigated using sensitivity analysis. Most researchers use additive-subtractive methods. However, these methods do not provide much information about model sensitivity. In this research, three methods were used to analyze the sensitivity of AquaCrop to simulate winter wheat grain yield under different irrigation requirements. The methods included (1) an increasing-decreasing method; (2) a limit method; and (3) a Gamma test that was based on the nonlinear relationship between inputs and outputs. The irrigation treatments were 100%, 75%, 50%, and 0% of the irrigation requirement and were designated as I1, I2, I3, and I4. Six input parameters consisting of normalized water productivity (WP*), maximum crop coefficient for transpiration (KCTR), initial canopy cover (CCo), crop canopy growth coefficient (CGC), crop canopy decline coefficient (CDC) and harvest index (HI) were evaluated for sensitivity analysis. The results showed that the sensitivity of the AquaCrop model was extremely high to WP* changes and moderate to CCo changes. An inverse relationship between wheat grain yield and CDC and a direct relationship between wheat grain yield and other input parameters were observed. The sensitivity of the AquaCrop model to the CCo parameter was the same in all irrigation treatments. The increase in water stress decreased the sensitivity of the AquaCrop model to the input parameters. Therefore, in the case of large differences between simulated and observed grain yield, it is suggested to change WP* and Kctr values. In the condition of moderate difference, it is better to change two parameters, HI and CDC. To reduce the slight difference between the simulated and observed grain yield, it is suggested to change the two parameters, CGC and CCo. It should be noted that the results of the sensitivity analysis are specific to the experimental conditions, such as plant density, soil texture, and water supply, and may vary when applied to different regions. Therefore, it is recommended to obtain region-specific results and determine the sensitivity of the AquaCrop model to input parameters.
    • Download: (1.876Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity Analysis of AquaCrop Model for Winter Wheat in Different Water Supply Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297704
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorAli Heydar Nasrolahi
    contributor authorMohsen Ahmadee
    contributor authorRabee Rustum
    date accessioned2024-04-27T22:52:07Z
    date available2024-04-27T22:52:07Z
    date issued2024/04/01
    identifier other10.1061-JIDEDH.IRENG-10099.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297704
    description abstractAquaCrop, a water-driven model, has been developed to simulate the response of crops, including wheat, to the amount of irrigation water. To estimate crop yield using this model, the calibration stage is applied first, employing the available data. Calibration accuracy guarantees the validation accuracy of this model. For this reason, before the calibration stage, the response of the AquaCrop model to changes in input parameters is investigated using sensitivity analysis. Most researchers use additive-subtractive methods. However, these methods do not provide much information about model sensitivity. In this research, three methods were used to analyze the sensitivity of AquaCrop to simulate winter wheat grain yield under different irrigation requirements. The methods included (1) an increasing-decreasing method; (2) a limit method; and (3) a Gamma test that was based on the nonlinear relationship between inputs and outputs. The irrigation treatments were 100%, 75%, 50%, and 0% of the irrigation requirement and were designated as I1, I2, I3, and I4. Six input parameters consisting of normalized water productivity (WP*), maximum crop coefficient for transpiration (KCTR), initial canopy cover (CCo), crop canopy growth coefficient (CGC), crop canopy decline coefficient (CDC) and harvest index (HI) were evaluated for sensitivity analysis. The results showed that the sensitivity of the AquaCrop model was extremely high to WP* changes and moderate to CCo changes. An inverse relationship between wheat grain yield and CDC and a direct relationship between wheat grain yield and other input parameters were observed. The sensitivity of the AquaCrop model to the CCo parameter was the same in all irrigation treatments. The increase in water stress decreased the sensitivity of the AquaCrop model to the input parameters. Therefore, in the case of large differences between simulated and observed grain yield, it is suggested to change WP* and Kctr values. In the condition of moderate difference, it is better to change two parameters, HI and CDC. To reduce the slight difference between the simulated and observed grain yield, it is suggested to change the two parameters, CGC and CCo. It should be noted that the results of the sensitivity analysis are specific to the experimental conditions, such as plant density, soil texture, and water supply, and may vary when applied to different regions. Therefore, it is recommended to obtain region-specific results and determine the sensitivity of the AquaCrop model to input parameters.
    publisherASCE
    titleSensitivity Analysis of AquaCrop Model for Winter Wheat in Different Water Supply Conditions
    typeJournal Article
    journal volume150
    journal issue2
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/JIDEDH.IRENG-10099
    journal fristpage04024002-1
    journal lastpage04024002-12
    page12
    treeJournal of Irrigation and Drainage Engineering:;2024:;Volume ( 150 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian