YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of Precipitation Monitoring Network via Robust Empirical Orthogonal Function Analysis with QR Column Pivoting

    Source: Journal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 003::page 04024007-1
    Author:
    Anıl Çelik
    ,
    Abdüsselam Altunkaynak
    DOI: 10.1061/JHYEFF.HEENG-5947
    Publisher: ASCE
    Abstract: The design of optimal precipitation station configuration (network) is pivotal for obtaining accurate spatiotemporal data in a cost-efficient manner in terms of high operation, management and maintenance costs of stations, and missing data completion. In the present study, historical spatiotemporal precipitation data of 18 stations located in the Upper Euphrates watershed basin are initially exposed to empirical orthogonal function (EOF) analysis to exploit the general intrinsic low dimensionality of the precipitation phenomenon. Along with the basic EOF analysis, robust and mean-centered versions are also developed to improve the prediction accuracy of spatiotemporal precipitation data and optimize the number of stations in the watershed basin. Importantly, for the first time, robust EOF (R-EOF) analysis has been carried out in a hydrological predictive study. The matrix that contains the obtained modes (EOFs) is fed into the QR factorization with a column pivoting algorithm and sparse precipitation gauge locations are identified. The assessment of the model using the Nash–Sutcliffe coefficient of efficiency (CE), root mean square error (RMSE), and mean absolute error (MAE) metrics reveals that the complete dimensional state space can be reconstructed effectively, and its future evolution can be predicted accurately even with a small number of observation stations. Remarkably, the spatiotemporal precipitation data for the entire field can be reconstructed using only four, five, 10, or 12 stations, utilizing robust mean-centered (R-MC-EOF), robust (R-EOF), mean-centered (MC-EOF), and standalone EOF models. These models demonstrate high performance with CE values of 0.96, 0.94, 0.84, and 0.81 and RMSE values of 2.2, 3.8, 5.7, and 6.8 mm, respectively. Notably, both the R-EOF and MC-EOF models outperformed their standalone counterparts in terms of model performance. When a sufficient amount of spatiotemporal data is available, the optimal number and locations of precipitation gauges can be easily determined using the QR with a column pivoting algorithm. This algorithm is user friendly and can be implemented in popular programming environments such as Python, MATLAB, and R. Due to the limited budgets and/or low accessibility conditions, challenging basin topography, and bad weather conditions, not many areas are extensively equipped with instruments to measure the precipitation; thus, high-resolution data is not always available. Acquiring reliable and accurate data is critical for water resources management, flood and drought warning, irrigation networks, hydrological (e.g., watershed, rain-runoff) modeling, and urban and environmental planning. This renders the proposed methodology very crucial in obtaining high-fidelity spatiotemporal data.
    • Download: (3.168Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of Precipitation Monitoring Network via Robust Empirical Orthogonal Function Analysis with QR Column Pivoting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297685
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorAnıl Çelik
    contributor authorAbdüsselam Altunkaynak
    date accessioned2024-04-27T22:51:38Z
    date available2024-04-27T22:51:38Z
    date issued2024/06/01
    identifier other10.1061-JHYEFF.HEENG-5947.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297685
    description abstractThe design of optimal precipitation station configuration (network) is pivotal for obtaining accurate spatiotemporal data in a cost-efficient manner in terms of high operation, management and maintenance costs of stations, and missing data completion. In the present study, historical spatiotemporal precipitation data of 18 stations located in the Upper Euphrates watershed basin are initially exposed to empirical orthogonal function (EOF) analysis to exploit the general intrinsic low dimensionality of the precipitation phenomenon. Along with the basic EOF analysis, robust and mean-centered versions are also developed to improve the prediction accuracy of spatiotemporal precipitation data and optimize the number of stations in the watershed basin. Importantly, for the first time, robust EOF (R-EOF) analysis has been carried out in a hydrological predictive study. The matrix that contains the obtained modes (EOFs) is fed into the QR factorization with a column pivoting algorithm and sparse precipitation gauge locations are identified. The assessment of the model using the Nash–Sutcliffe coefficient of efficiency (CE), root mean square error (RMSE), and mean absolute error (MAE) metrics reveals that the complete dimensional state space can be reconstructed effectively, and its future evolution can be predicted accurately even with a small number of observation stations. Remarkably, the spatiotemporal precipitation data for the entire field can be reconstructed using only four, five, 10, or 12 stations, utilizing robust mean-centered (R-MC-EOF), robust (R-EOF), mean-centered (MC-EOF), and standalone EOF models. These models demonstrate high performance with CE values of 0.96, 0.94, 0.84, and 0.81 and RMSE values of 2.2, 3.8, 5.7, and 6.8 mm, respectively. Notably, both the R-EOF and MC-EOF models outperformed their standalone counterparts in terms of model performance. When a sufficient amount of spatiotemporal data is available, the optimal number and locations of precipitation gauges can be easily determined using the QR with a column pivoting algorithm. This algorithm is user friendly and can be implemented in popular programming environments such as Python, MATLAB, and R. Due to the limited budgets and/or low accessibility conditions, challenging basin topography, and bad weather conditions, not many areas are extensively equipped with instruments to measure the precipitation; thus, high-resolution data is not always available. Acquiring reliable and accurate data is critical for water resources management, flood and drought warning, irrigation networks, hydrological (e.g., watershed, rain-runoff) modeling, and urban and environmental planning. This renders the proposed methodology very crucial in obtaining high-fidelity spatiotemporal data.
    publisherASCE
    titleOptimization of Precipitation Monitoring Network via Robust Empirical Orthogonal Function Analysis with QR Column Pivoting
    typeJournal Article
    journal volume29
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/JHYEFF.HEENG-5947
    journal fristpage04024007-1
    journal lastpage04024007-12
    page12
    treeJournal of Hydrologic Engineering:;2024:;Volume ( 029 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian