YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of Bedload and Bedforms to Near-Bed Flow Structures

    Source: Journal of Hydraulic Engineering:;2024:;Volume ( 150 ):;issue: 001::page 04023060-1
    Author:
    Chenwei Zhao
    ,
    Hongwei Fang
    ,
    Pablo Ouro
    ,
    Thorsten Stoesser
    ,
    Subhasish Dey
    DOI: 10.1061/JHEND8.HYENG-13618
    Publisher: ASCE
    Abstract: In this study, the large eddy simulation (LES) under the Eulerian method is used to solve the Navier-Stokes equations for turbulent flow simulation. The Lagrangian point-particle model is applied to track particle trajectories and to calculate the forces exerted by the flow on the particles, and the particle–wall and particle–particle collisions are also accounted for. Nine simulations cases were carried out along the line of previous experiments that considered different bedform regimes, namely, ripples and dunes. The resulting bedload intensity parameter and the simulated bedforms for all the cases agree with the results obtained from the existing classical formulas. The three-dimensionality of sediment transport randomly occurs due to the turbulent flow. Coherent structures are formed as the near-bed low-speed fluid streaks entrain into the mainstream over the stoss-side of the ripples, and the high-speed fluid streaks from the mainstream rush toward the bed over the leeside. As a result, kolk–boil and hairpin vortices develop nearby. Ejection and sweep prevail near the bed, where the particles transport. The phenomenon disappears as the flow intensity increases. The presence of bedload particles also modifies the propagation angle and range of velocity fluctuation, especially in the streamwise direction. To conclude, a logistic regression formula for bedload intensity parameters, accounting for the fluid rotation, deformation, and translation terms that signify the fluid vortical motions, is obtained. It reveals that as long as these three terms are accurately quantified, the bed shear stress and bedload transport rate can be effectively estimated.
    • Download: (5.025Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of Bedload and Bedforms to Near-Bed Flow Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297629
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorChenwei Zhao
    contributor authorHongwei Fang
    contributor authorPablo Ouro
    contributor authorThorsten Stoesser
    contributor authorSubhasish Dey
    date accessioned2024-04-27T22:50:21Z
    date available2024-04-27T22:50:21Z
    date issued2024/01/01
    identifier other10.1061-JHEND8.HYENG-13618.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297629
    description abstractIn this study, the large eddy simulation (LES) under the Eulerian method is used to solve the Navier-Stokes equations for turbulent flow simulation. The Lagrangian point-particle model is applied to track particle trajectories and to calculate the forces exerted by the flow on the particles, and the particle–wall and particle–particle collisions are also accounted for. Nine simulations cases were carried out along the line of previous experiments that considered different bedform regimes, namely, ripples and dunes. The resulting bedload intensity parameter and the simulated bedforms for all the cases agree with the results obtained from the existing classical formulas. The three-dimensionality of sediment transport randomly occurs due to the turbulent flow. Coherent structures are formed as the near-bed low-speed fluid streaks entrain into the mainstream over the stoss-side of the ripples, and the high-speed fluid streaks from the mainstream rush toward the bed over the leeside. As a result, kolk–boil and hairpin vortices develop nearby. Ejection and sweep prevail near the bed, where the particles transport. The phenomenon disappears as the flow intensity increases. The presence of bedload particles also modifies the propagation angle and range of velocity fluctuation, especially in the streamwise direction. To conclude, a logistic regression formula for bedload intensity parameters, accounting for the fluid rotation, deformation, and translation terms that signify the fluid vortical motions, is obtained. It reveals that as long as these three terms are accurately quantified, the bed shear stress and bedload transport rate can be effectively estimated.
    publisherASCE
    titleResponse of Bedload and Bedforms to Near-Bed Flow Structures
    typeJournal Article
    journal volume150
    journal issue1
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/JHEND8.HYENG-13618
    journal fristpage04023060-1
    journal lastpage04023060-15
    page15
    treeJournal of Hydraulic Engineering:;2024:;Volume ( 150 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian