YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Jet-Driven Mixing Regimes Identified in the Unsteady Isothermal Filling of Rectangular Municipal Water Storage Tanks

    Source: Journal of Hydraulic Engineering:;2024:;Volume ( 150 ):;issue: 002::page 04023065-1
    Author:
    Pramod Narayan Bangalore
    ,
    K. O. Homan
    DOI: 10.1061/JHEND8.HYENG-13448
    Publisher: ASCE
    Abstract: Poor mixing of old and new water in municipal water storage vessels is a well-documented basis for potentially harmful water quality degradation in drinking water distribution systems. This numerical study investigates the effects of inflow and operational variables on mixing in the jet-driven filling process, with a particular focus on the transition from inadequate to sufficient mixing levels. An isothermal unsteady reynolds-averaged-navier-stokes volume-of-fluid (RANS-VOF) simulation is used to model the variable-volume filling process, accounting for the moving free surface following a draw-down in the stored water volume. A low diffusivity tracer is used to mark the old-water volume, and a coefficient of variation (CoV) quantifying the departure from a uniform tracer distribution is used to monitor the time-dependent mixing. The results indicate that adequate mixing does not necessarily follow refills from common draw-down levels. Three distinct mixing regimes are identified by unique CoV transients. Introducing consideration of the mean-flow kinetic energy, the observed mixing behaviors are readily explained by the jet inlet power and the distribution of the mean-flow kinetic energy in the tank. Extending the simulations to periods after cessation of the inflow and to partial refills, the role of residual mean-flow kinetic energy is further highlighted, especially its limited vertical reach. For cases in which a sufficiently mixed condition is achieved, the time-to-mix results are well described by a mixing-time correlation closely matching previously published results.
    • Download: (1.327Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Jet-Driven Mixing Regimes Identified in the Unsteady Isothermal Filling of Rectangular Municipal Water Storage Tanks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297620
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorPramod Narayan Bangalore
    contributor authorK. O. Homan
    date accessioned2024-04-27T22:50:07Z
    date available2024-04-27T22:50:07Z
    date issued2024/03/01
    identifier other10.1061-JHEND8.HYENG-13448.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297620
    description abstractPoor mixing of old and new water in municipal water storage vessels is a well-documented basis for potentially harmful water quality degradation in drinking water distribution systems. This numerical study investigates the effects of inflow and operational variables on mixing in the jet-driven filling process, with a particular focus on the transition from inadequate to sufficient mixing levels. An isothermal unsteady reynolds-averaged-navier-stokes volume-of-fluid (RANS-VOF) simulation is used to model the variable-volume filling process, accounting for the moving free surface following a draw-down in the stored water volume. A low diffusivity tracer is used to mark the old-water volume, and a coefficient of variation (CoV) quantifying the departure from a uniform tracer distribution is used to monitor the time-dependent mixing. The results indicate that adequate mixing does not necessarily follow refills from common draw-down levels. Three distinct mixing regimes are identified by unique CoV transients. Introducing consideration of the mean-flow kinetic energy, the observed mixing behaviors are readily explained by the jet inlet power and the distribution of the mean-flow kinetic energy in the tank. Extending the simulations to periods after cessation of the inflow and to partial refills, the role of residual mean-flow kinetic energy is further highlighted, especially its limited vertical reach. For cases in which a sufficiently mixed condition is achieved, the time-to-mix results are well described by a mixing-time correlation closely matching previously published results.
    publisherASCE
    titleJet-Driven Mixing Regimes Identified in the Unsteady Isothermal Filling of Rectangular Municipal Water Storage Tanks
    typeJournal Article
    journal volume150
    journal issue2
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/JHEND8.HYENG-13448
    journal fristpage04023065-1
    journal lastpage04023065-15
    page15
    treeJournal of Hydraulic Engineering:;2024:;Volume ( 150 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian