YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrating Virtual Reality and Consensus Models for Streamlined Built Environment Design Collaboration

    Source: Journal of Construction Engineering and Management:;2024:;Volume ( 150 ):;issue: 004::page 04024010-1
    Author:
    Yuxuan Zhang
    ,
    Bo Xiao
    ,
    Xinming Li
    DOI: 10.1061/JCEMD4.COENG-14348
    Publisher: ASCE
    Abstract: Collaboration in design decision-making is a critical factor in enhancing the quality of built environments. However, several factors, such as the lack of clarity in the negotiation process, the diverse disciplinary backgrounds of stakeholders, and conformity bias, pose significant challenges, rendering the collaboration in built environment design time-consuming. To overcome these challenges and improve the efficiency of collaborative design, a novel solution that introduces a consensus model enhanced by virtual reality (VR) is proposed in this paper. The proposed model implements a structured decision-making process to foster fact-based discussions and minimize conflicts arising from personal biases. It ensures equal influence among all stakeholders, prevents the dominance of any single viewpoint, and offers personalized recommendations to guide stakeholders toward group consensus while respecting their initial preferences. The study leverages VR techniques to enhance communication and comprehension during design negotiations. The VR collaboration platform provides a robust visualization and user-friendly interface, empowering stakeholders to understand the decision-making process better and iteratively refine their preferences for optimal user satisfaction. By integrating VR, the burden traditionally placed on a moderator in group decision-making (GDM) is reduced, resulting in a more streamlined and efficient collaborative process. Additionally, stakeholders can conveniently communicate their preferences remotely through cloud services within the immersive VR collaboration environment, further enhancing the overall design collaboration experience. To the best knowledge of the authors, this study is the first attempt to combine a consensus model with VR to create a comprehensive solution that supports stakeholders in achieving consensus design solutions in the early design stage. This study contributes to the advancement of knowledge in the field of design collaboration by exploring the potential benefits of a VR-enhanced consensus model for GDM.
    • Download: (2.289Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrating Virtual Reality and Consensus Models for Streamlined Built Environment Design Collaboration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297470
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorYuxuan Zhang
    contributor authorBo Xiao
    contributor authorXinming Li
    date accessioned2024-04-27T22:46:39Z
    date available2024-04-27T22:46:39Z
    date issued2024/04/01
    identifier other10.1061-JCEMD4.COENG-14348.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297470
    description abstractCollaboration in design decision-making is a critical factor in enhancing the quality of built environments. However, several factors, such as the lack of clarity in the negotiation process, the diverse disciplinary backgrounds of stakeholders, and conformity bias, pose significant challenges, rendering the collaboration in built environment design time-consuming. To overcome these challenges and improve the efficiency of collaborative design, a novel solution that introduces a consensus model enhanced by virtual reality (VR) is proposed in this paper. The proposed model implements a structured decision-making process to foster fact-based discussions and minimize conflicts arising from personal biases. It ensures equal influence among all stakeholders, prevents the dominance of any single viewpoint, and offers personalized recommendations to guide stakeholders toward group consensus while respecting their initial preferences. The study leverages VR techniques to enhance communication and comprehension during design negotiations. The VR collaboration platform provides a robust visualization and user-friendly interface, empowering stakeholders to understand the decision-making process better and iteratively refine their preferences for optimal user satisfaction. By integrating VR, the burden traditionally placed on a moderator in group decision-making (GDM) is reduced, resulting in a more streamlined and efficient collaborative process. Additionally, stakeholders can conveniently communicate their preferences remotely through cloud services within the immersive VR collaboration environment, further enhancing the overall design collaboration experience. To the best knowledge of the authors, this study is the first attempt to combine a consensus model with VR to create a comprehensive solution that supports stakeholders in achieving consensus design solutions in the early design stage. This study contributes to the advancement of knowledge in the field of design collaboration by exploring the potential benefits of a VR-enhanced consensus model for GDM.
    publisherASCE
    titleIntegrating Virtual Reality and Consensus Models for Streamlined Built Environment Design Collaboration
    typeJournal Article
    journal volume150
    journal issue4
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-14348
    journal fristpage04024010-1
    journal lastpage04024010-15
    page15
    treeJournal of Construction Engineering and Management:;2024:;Volume ( 150 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian