Performance of GFRP-Reinforced Concrete Corbels under Monotonic LoadingSource: Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 001::page 04023067-1DOI: 10.1061/JCCOF2.CCENG-4358Publisher: ASCE
Abstract: Reinforced concrete (RC) corbels are commonly utilized in bridges and industrial buildings to support primary beams and girders. Using glass fiber–reinforced polymer (GFRP) reinforcement in corbels can be advantageous due to its corrosion-resistance properties. However, GFRP reinforcement, with a lower modulus of elasticity and shear strength than steel, could affect the capacity of direct shear. This paper presents the experimental results of nine full-scale, double-sided corbels reinforced with either GFRP or steel bent bars. Large-scale double-sided corbels were constructed and tested for failure under monotonic concentric loads. The test parameters included the reinforcement type (GFRP and steel), the main reinforcement ratio (0.5% and 0.7%), the shear span-to-depth ratio (a/d = 0.33 and 0.66), and the amount of crack-control horizontal reinforcement (0.7% and 1.3%). The predictions of corbel capacity using the Canadian standards for FRP-RC structures were conservative, especially for the corbels with crack-control reinforcement. In contrast, the predictions of the American and European codes overestimated the corbel strength, particularly for the higher a/d ratio of 0.66.
|
Collections
Show full item record
contributor author | Ankit Borgohain | |
contributor author | Ahmed G. Bediwy | |
contributor author | Ehab F. El-Salakawy | |
date accessioned | 2024-04-27T22:43:58Z | |
date available | 2024-04-27T22:43:58Z | |
date issued | 2024/02/01 | |
identifier other | 10.1061-JCCOF2.CCENG-4358.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4297362 | |
description abstract | Reinforced concrete (RC) corbels are commonly utilized in bridges and industrial buildings to support primary beams and girders. Using glass fiber–reinforced polymer (GFRP) reinforcement in corbels can be advantageous due to its corrosion-resistance properties. However, GFRP reinforcement, with a lower modulus of elasticity and shear strength than steel, could affect the capacity of direct shear. This paper presents the experimental results of nine full-scale, double-sided corbels reinforced with either GFRP or steel bent bars. Large-scale double-sided corbels were constructed and tested for failure under monotonic concentric loads. The test parameters included the reinforcement type (GFRP and steel), the main reinforcement ratio (0.5% and 0.7%), the shear span-to-depth ratio (a/d = 0.33 and 0.66), and the amount of crack-control horizontal reinforcement (0.7% and 1.3%). The predictions of corbel capacity using the Canadian standards for FRP-RC structures were conservative, especially for the corbels with crack-control reinforcement. In contrast, the predictions of the American and European codes overestimated the corbel strength, particularly for the higher a/d ratio of 0.66. | |
publisher | ASCE | |
title | Performance of GFRP-Reinforced Concrete Corbels under Monotonic Loading | |
type | Journal Article | |
journal volume | 28 | |
journal issue | 1 | |
journal title | Journal of Composites for Construction | |
identifier doi | 10.1061/JCCOF2.CCENG-4358 | |
journal fristpage | 04023067-1 | |
journal lastpage | 04023067-14 | |
page | 14 | |
tree | Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 001 | |
contenttype | Fulltext |