YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Mesoscale Phase Field Model for Analysis of FRP-to-Concrete Bonded Joints

    Source: Journal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 003::page 04024007-1
    Author:
    Peng Zhang
    ,
    Jian-Guo Dai
    DOI: 10.1061/JCCOF2.CCENG-4255
    Publisher: ASCE
    Abstract: Externally bonded fiber-reinforced polymer (EB-FRP) laminates have become popular for strengthening existing reinforced concrete (RC) structures. However, the high tensile strength of the FRP laminate is often not fully utilized due to premature debonding failure of the FRP-to-concrete interface, typically occurring in a thin layer beneath the bond interface. Numerical simulations have gained significant attention as a supplement to experimental tests, as they have the ability to provide valuable insights into the debonding process. However, most existing numerical models for EB-FRP joint debonding are unable to explicitly consider cracks within different concrete phases [i.e., mortar and interfacial transition (ITZ)], or precisely capture the corresponding failure mechanisms involving mortar cracking, ITZ debonding, and kinking. This study proposes a novel mesoscale phase field model for concrete, which is capable of accurately modeling complex failure behaviors, including mixed-mode fracture in both the mortar and ITZ, as well as friction on cracked surfaces. The ITZ is regularized using an auxiliary interface phase field and then the overall mixed-mode failure behaviors in both the mortar and ITZ are modeled using a unified damage phase field. To validate the proposed mesoscale model, three pull-off tests of FRP-to-concrete bonded joints, which have been well reported in the existing literature, are simulated. Moreover, the model is used to investigate the effects of adhesion and the FRP laminate on the debonding behavior of the FRP-to-concrete joints.
    • Download: (2.111Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Mesoscale Phase Field Model for Analysis of FRP-to-Concrete Bonded Joints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297351
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorPeng Zhang
    contributor authorJian-Guo Dai
    date accessioned2024-04-27T22:43:40Z
    date available2024-04-27T22:43:40Z
    date issued2024/06/01
    identifier other10.1061-JCCOF2.CCENG-4255.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297351
    description abstractExternally bonded fiber-reinforced polymer (EB-FRP) laminates have become popular for strengthening existing reinforced concrete (RC) structures. However, the high tensile strength of the FRP laminate is often not fully utilized due to premature debonding failure of the FRP-to-concrete interface, typically occurring in a thin layer beneath the bond interface. Numerical simulations have gained significant attention as a supplement to experimental tests, as they have the ability to provide valuable insights into the debonding process. However, most existing numerical models for EB-FRP joint debonding are unable to explicitly consider cracks within different concrete phases [i.e., mortar and interfacial transition (ITZ)], or precisely capture the corresponding failure mechanisms involving mortar cracking, ITZ debonding, and kinking. This study proposes a novel mesoscale phase field model for concrete, which is capable of accurately modeling complex failure behaviors, including mixed-mode fracture in both the mortar and ITZ, as well as friction on cracked surfaces. The ITZ is regularized using an auxiliary interface phase field and then the overall mixed-mode failure behaviors in both the mortar and ITZ are modeled using a unified damage phase field. To validate the proposed mesoscale model, three pull-off tests of FRP-to-concrete bonded joints, which have been well reported in the existing literature, are simulated. Moreover, the model is used to investigate the effects of adhesion and the FRP laminate on the debonding behavior of the FRP-to-concrete joints.
    publisherASCE
    titleNew Mesoscale Phase Field Model for Analysis of FRP-to-Concrete Bonded Joints
    typeJournal Article
    journal volume28
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4255
    journal fristpage04024007-1
    journal lastpage04024007-13
    page13
    treeJournal of Composites for Construction:;2024:;Volume ( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian