YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transfer-Learning and Texture Features for Recognition of the Conditions of Construction Materials with Small Data Sets

    Source: Journal of Computing in Civil Engineering:;2024:;Volume ( 038 ):;issue: 001::page 04023036-1
    Author:
    Eyob Mengiste
    ,
    Karunakar Reddy Mannem
    ,
    Samuel A. Prieto
    ,
    Borja Garcia de Soto
    DOI: 10.1061/JCCEE5.CPENG-5478
    Publisher: ASCE
    Abstract: Construction materials undergo appearance and textural changes during the construction process. Accurate recognition of these changes is critical for effectively understanding the construction status; however, recognizing the various levels of detailed material conditions is not sufficiently explored. The primary challenge in the detailed recognition of the conditions of the material is the availability of labeled training data. To address this challenge, this study proposes a novel state-of-the-art deep learning model that leverages transfer learning, utilizing the pretrained Inception V3 to transfer knowledge to the limited labeled data set in the construction context. This enables the model to learn meaningful representations from the limited training data, enhancing its ability to accurately classify material conditions. In addition, gray-level co-occurrence matrix (GLCM)–based texture features are extracted from the images to capture the appearance and textural changes in construction materials, which are then concatenated with the transferred convolutional neural network (CNN) features to create a more comprehensive representation of the material conditions. The proposed model achieved an overall classification accuracy of 95% and 71% with limited (208 images) and very small (70 images) data sets, respectively. It outperformed different experimental architectures, including CNN models developed using limited data with and without augmentation, CNN model with data augmentation and transfer learning, separate models using local binary pattern (LBP) and GLCM texture features with super learners trained using augmented limited data. The findings suggest that the proposed model, which combines transfer learning with GLCM-based texture features, is effective in accurately recognizing the conditions of construction materials, even with limited labeled training data. This can contribute to improved construction management and monitoring. There are several practical applications of the proposed model combining CNN architecture with GLCM textures in construction industry. The primary applications are in activities such as quality inspection and progress monitoring. By analyzing images of different material conditions, such as concrete, plaster, or masonry walls, the model can be used to automatically detect defects or inconsistencies. This enables construction practitioners to ensure the quality of their structures, detect issues early on, and make informed decisions for maintenance and repair. Additionally, the model can be used to monitor the progress of construction projects by analyzing images to track the status and completion of different building components to estimate delays or cost overruns comparing with the expected material condition at a given time of the schedule. Moreover, because the model does not depend on large training data set, it enables construction managers to develop their project specific data sets and automate material condition detection and monitoring.
    • Download: (1.614Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transfer-Learning and Texture Features for Recognition of the Conditions of Construction Materials with Small Data Sets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297326
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorEyob Mengiste
    contributor authorKarunakar Reddy Mannem
    contributor authorSamuel A. Prieto
    contributor authorBorja Garcia de Soto
    date accessioned2024-04-27T22:43:04Z
    date available2024-04-27T22:43:04Z
    date issued2024/01/01
    identifier other10.1061-JCCEE5.CPENG-5478.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297326
    description abstractConstruction materials undergo appearance and textural changes during the construction process. Accurate recognition of these changes is critical for effectively understanding the construction status; however, recognizing the various levels of detailed material conditions is not sufficiently explored. The primary challenge in the detailed recognition of the conditions of the material is the availability of labeled training data. To address this challenge, this study proposes a novel state-of-the-art deep learning model that leverages transfer learning, utilizing the pretrained Inception V3 to transfer knowledge to the limited labeled data set in the construction context. This enables the model to learn meaningful representations from the limited training data, enhancing its ability to accurately classify material conditions. In addition, gray-level co-occurrence matrix (GLCM)–based texture features are extracted from the images to capture the appearance and textural changes in construction materials, which are then concatenated with the transferred convolutional neural network (CNN) features to create a more comprehensive representation of the material conditions. The proposed model achieved an overall classification accuracy of 95% and 71% with limited (208 images) and very small (70 images) data sets, respectively. It outperformed different experimental architectures, including CNN models developed using limited data with and without augmentation, CNN model with data augmentation and transfer learning, separate models using local binary pattern (LBP) and GLCM texture features with super learners trained using augmented limited data. The findings suggest that the proposed model, which combines transfer learning with GLCM-based texture features, is effective in accurately recognizing the conditions of construction materials, even with limited labeled training data. This can contribute to improved construction management and monitoring. There are several practical applications of the proposed model combining CNN architecture with GLCM textures in construction industry. The primary applications are in activities such as quality inspection and progress monitoring. By analyzing images of different material conditions, such as concrete, plaster, or masonry walls, the model can be used to automatically detect defects or inconsistencies. This enables construction practitioners to ensure the quality of their structures, detect issues early on, and make informed decisions for maintenance and repair. Additionally, the model can be used to monitor the progress of construction projects by analyzing images to track the status and completion of different building components to estimate delays or cost overruns comparing with the expected material condition at a given time of the schedule. Moreover, because the model does not depend on large training data set, it enables construction managers to develop their project specific data sets and automate material condition detection and monitoring.
    publisherASCE
    titleTransfer-Learning and Texture Features for Recognition of the Conditions of Construction Materials with Small Data Sets
    typeJournal Article
    journal volume38
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/JCCEE5.CPENG-5478
    journal fristpage04023036-1
    journal lastpage04023036-12
    page12
    treeJournal of Computing in Civil Engineering:;2024:;Volume ( 038 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian