YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stress Response Behaviors of Steel Wires at the Anchorage Part of Bridge Cables under Tension and Bending Coupling Loads

    Source: Journal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 005::page 04024016-1
    Author:
    Huahuai Sun
    ,
    Xiatong Tang
    ,
    Chunsheng Wang
    ,
    Ping Fan
    ,
    Laiyong Wang
    DOI: 10.1061/JBENF2.BEENG-6557
    Publisher: ASCE
    Abstract: The stress response behaviors of steel wires at the anchorage part of bridge cables under tension and bending coupling loads play a predominant role in determining their fatigue life and failure modes. The inherent complexity of the spiral geometry and the large diameter of actual bridge cables made the stress response behaviors of steel wires at the anchorage part unclear up to now. An analytical method was proposed for spiral steel wires at the anchorage part of semiparallel steel wire cables under tension and bending coupling loads. The corresponding refined numerical modeling method was also developed for studying the local anchorage part. Both the analytical formulation and numerical model agree well with the related experimental results in the literature. The presented analytical and numerical methods are thereby efficient and accurate to simulate bridge cables under tension and bending coupling loads. The critical slip curvature of steel wires increases linearly with the tensile strain of the bridge cable. The axial stresses of the steel wires of the bridge cable at a given longitudinal location display a linear relation with the angular change at the anchorage end. For steel wires located at the guide deviator part of the bridge cable, the axial stress behavior differs between the stick and slip states. It changes to a chord curve in the longitudinal direction in the stick state, while it follows an exponential function with respect to the polar angle in the slip state. The axial stress range of the outermost steel wire of the bridge cable increases linearly with the harmonic tension load range and the bending load range, separately. Regarding the phase difference between harmonic tension and bending coupling loads, a phase difference of 0 represents the most unfavorable combination for the bridge cable. By contrast, when the phase difference falls between 0 and π/2, the two harmonic loads tend to mutually inhibit each other’s effects on the cable’s behavior.
    • Download: (1.958Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stress Response Behaviors of Steel Wires at the Anchorage Part of Bridge Cables under Tension and Bending Coupling Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297309
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorHuahuai Sun
    contributor authorXiatong Tang
    contributor authorChunsheng Wang
    contributor authorPing Fan
    contributor authorLaiyong Wang
    date accessioned2024-04-27T22:42:28Z
    date available2024-04-27T22:42:28Z
    date issued2024/05/01
    identifier other10.1061-JBENF2.BEENG-6557.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297309
    description abstractThe stress response behaviors of steel wires at the anchorage part of bridge cables under tension and bending coupling loads play a predominant role in determining their fatigue life and failure modes. The inherent complexity of the spiral geometry and the large diameter of actual bridge cables made the stress response behaviors of steel wires at the anchorage part unclear up to now. An analytical method was proposed for spiral steel wires at the anchorage part of semiparallel steel wire cables under tension and bending coupling loads. The corresponding refined numerical modeling method was also developed for studying the local anchorage part. Both the analytical formulation and numerical model agree well with the related experimental results in the literature. The presented analytical and numerical methods are thereby efficient and accurate to simulate bridge cables under tension and bending coupling loads. The critical slip curvature of steel wires increases linearly with the tensile strain of the bridge cable. The axial stresses of the steel wires of the bridge cable at a given longitudinal location display a linear relation with the angular change at the anchorage end. For steel wires located at the guide deviator part of the bridge cable, the axial stress behavior differs between the stick and slip states. It changes to a chord curve in the longitudinal direction in the stick state, while it follows an exponential function with respect to the polar angle in the slip state. The axial stress range of the outermost steel wire of the bridge cable increases linearly with the harmonic tension load range and the bending load range, separately. Regarding the phase difference between harmonic tension and bending coupling loads, a phase difference of 0 represents the most unfavorable combination for the bridge cable. By contrast, when the phase difference falls between 0 and π/2, the two harmonic loads tend to mutually inhibit each other’s effects on the cable’s behavior.
    publisherASCE
    titleStress Response Behaviors of Steel Wires at the Anchorage Part of Bridge Cables under Tension and Bending Coupling Loads
    typeJournal Article
    journal volume29
    journal issue5
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6557
    journal fristpage04024016-1
    journal lastpage04024016-14
    page14
    treeJournal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian