YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experiments and Numerical Analysis of a Seismically Resilient Bridge Bent with Stretch Length Anchors as Energy Dissipators

    Source: Journal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 006::page 04024034-1
    Author:
    Suman Neupane
    ,
    Chris P. Pantelides
    DOI: 10.1061/JBENF2.BEENG-6453
    Publisher: ASCE
    Abstract: The experimental performance and numerical analysis of a hybrid two-column bridge bent was examined to evaluate its ability to self-center and dissipate hysteretic energy during earthquakes. The experiment was conducted using quasi-static cyclic loads on a scaled specimen with posttensioning bars for self-centering and stretch length anchors for hysteretic energy dissipation. Posttensioning bars were used to connect the cap beam, columns, and footings without any mild steel reinforcing bars crossing the cap beam-to-column and column-to-footing interfaces. The number of posttensioning bars and initial posttensioning forces and the number of stretch length anchors were determined using mechanics and equivalent design of reinforced concrete columns. No yielding of posttensioning bars, mild steel reinforcing bars, or steel spirals was observed up to a 3.5% drift ratio; yielding occurred only in the stretch length anchors that are replaceable after an earthquake. Several stretch length anchors experienced tensile elongation, which exceeded their diameter. The residual drift of the hybrid bridge bent remained below 0.5% at the maximum applied 3.5% drift ratio without any visible damage to the concrete, steel collars, or steel chairs. A nonlinear numerical model was developed to represent the hysteretic response of the rocking bridge bent and was compared with the experimental results showing acceptable global and local response. The experiment and the nonlinear numerical model demonstrate that the bridge bent remains serviceable after significant drift cycles without any damage requiring repairs, which improves seismic resilience.
    • Download: (3.744Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experiments and Numerical Analysis of a Seismically Resilient Bridge Bent with Stretch Length Anchors as Energy Dissipators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297291
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorSuman Neupane
    contributor authorChris P. Pantelides
    date accessioned2024-04-27T22:42:03Z
    date available2024-04-27T22:42:03Z
    date issued2024/06/01
    identifier other10.1061-JBENF2.BEENG-6453.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297291
    description abstractThe experimental performance and numerical analysis of a hybrid two-column bridge bent was examined to evaluate its ability to self-center and dissipate hysteretic energy during earthquakes. The experiment was conducted using quasi-static cyclic loads on a scaled specimen with posttensioning bars for self-centering and stretch length anchors for hysteretic energy dissipation. Posttensioning bars were used to connect the cap beam, columns, and footings without any mild steel reinforcing bars crossing the cap beam-to-column and column-to-footing interfaces. The number of posttensioning bars and initial posttensioning forces and the number of stretch length anchors were determined using mechanics and equivalent design of reinforced concrete columns. No yielding of posttensioning bars, mild steel reinforcing bars, or steel spirals was observed up to a 3.5% drift ratio; yielding occurred only in the stretch length anchors that are replaceable after an earthquake. Several stretch length anchors experienced tensile elongation, which exceeded their diameter. The residual drift of the hybrid bridge bent remained below 0.5% at the maximum applied 3.5% drift ratio without any visible damage to the concrete, steel collars, or steel chairs. A nonlinear numerical model was developed to represent the hysteretic response of the rocking bridge bent and was compared with the experimental results showing acceptable global and local response. The experiment and the nonlinear numerical model demonstrate that the bridge bent remains serviceable after significant drift cycles without any damage requiring repairs, which improves seismic resilience.
    publisherASCE
    titleExperiments and Numerical Analysis of a Seismically Resilient Bridge Bent with Stretch Length Anchors as Energy Dissipators
    typeJournal Article
    journal volume29
    journal issue6
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6453
    journal fristpage04024034-1
    journal lastpage04024034-18
    page18
    treeJournal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian