YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Benchmark Data Set for Vision-Based Traffic Load Monitoring in a Cable-Stayed Bridge

    Source: Journal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 002::page 04723001-1
    Author:
    Liangfu Ge
    ,
    Danhui Dan
    ,
    Ayan Sadhu
    DOI: 10.1061/JBENF2.BEENG-6336
    Publisher: ASCE
    Abstract: Traffic load monitoring based on deep learning and computer vision has garnered significant attention in bridge engineering worldwide. Unlike traditional traffic load monitoring systems, computer vision-based techniques can accurately extract the spatiotemporal load distribution across the entire bridge in an autonomous manner. However, many of the related studies in the literature used data sets that were collected from a few specific areas of different bridges, and there are very limited data sets that provide complete coverage of the entire bridge, making a detailed comparison of different computer vision methods difficult. This paper presents a benchmark data set that provides a series of annotations and field measurements required for traffic load detection, tracking, and continuous monitoring on the bridge. The data set was collected by five cameras and two weigh-in-motion systems installed on a cable-stayed bridge and is divided into three subsets. The first subset contains over 32,000 images and annotation files of 11 types of vehicle-related targets, which are necessary for the training of vehicle detection models. The second subset consists of photos of the calibration board and coordinates of reference points that are used for camera calibration. The last subset is designated for the field verification of various algorithms, providing synchronized vehicle weight data and monitoring videos covering the whole bridge. To the author’s knowledge, this data set is the first open-source data set for vision-based traffic load monitoring in a bridge, which will have tremendous value in promoting research in the area of innovative bridge health monitoring technologies. Details of this data set will be available in the public domain through a Zenodo data repository.
    • Download: (1.176Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Benchmark Data Set for Vision-Based Traffic Load Monitoring in a Cable-Stayed Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297271
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorLiangfu Ge
    contributor authorDanhui Dan
    contributor authorAyan Sadhu
    date accessioned2024-04-27T22:41:28Z
    date available2024-04-27T22:41:28Z
    date issued2024/02/01
    identifier other10.1061-JBENF2.BEENG-6336.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297271
    description abstractTraffic load monitoring based on deep learning and computer vision has garnered significant attention in bridge engineering worldwide. Unlike traditional traffic load monitoring systems, computer vision-based techniques can accurately extract the spatiotemporal load distribution across the entire bridge in an autonomous manner. However, many of the related studies in the literature used data sets that were collected from a few specific areas of different bridges, and there are very limited data sets that provide complete coverage of the entire bridge, making a detailed comparison of different computer vision methods difficult. This paper presents a benchmark data set that provides a series of annotations and field measurements required for traffic load detection, tracking, and continuous monitoring on the bridge. The data set was collected by five cameras and two weigh-in-motion systems installed on a cable-stayed bridge and is divided into three subsets. The first subset contains over 32,000 images and annotation files of 11 types of vehicle-related targets, which are necessary for the training of vehicle detection models. The second subset consists of photos of the calibration board and coordinates of reference points that are used for camera calibration. The last subset is designated for the field verification of various algorithms, providing synchronized vehicle weight data and monitoring videos covering the whole bridge. To the author’s knowledge, this data set is the first open-source data set for vision-based traffic load monitoring in a bridge, which will have tremendous value in promoting research in the area of innovative bridge health monitoring technologies. Details of this data set will be available in the public domain through a Zenodo data repository.
    publisherASCE
    titleA Benchmark Data Set for Vision-Based Traffic Load Monitoring in a Cable-Stayed Bridge
    typeJournal Article
    journal volume29
    journal issue2
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/JBENF2.BEENG-6336
    journal fristpage04723001-1
    journal lastpage04723001-7
    page7
    treeJournal of Bridge Engineering:;2024:;Volume ( 029 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian