YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Numerical Modeling of 2D C/C Composites Considering Pore Size Distribution

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004::page 04024029-1
    Author:
    O. S. Vishnu
    ,
    G. S. Pavan
    DOI: 10.1061/JAEEEZ.ASENG-5434
    Publisher: ASCE
    Abstract: This study proposes a multiscale numerical modeling procedure to evaluate the elastic properties of two-dimensional (2D) eight-harness satin woven carbon/carbon (C/C) composites. The multiscale modeling technique consists of analysis at the microlevel and mesolevel. In microscale analysis, a 3D representative volume element (RVE) of C/C composite with carbon fiber, pyrolytic carbon, and pores is considered. The microstructure of the C/C composite is analyzed using scanning electron microscope (SEM) images. Statistical characterization of pore distribution inside the C/C composite is performed, and different probability density functions are generated for pores’ number, area, and aspect ratio inside the C/C composite. Carbon fibers and pores are inserted in the 3D RVE using the RSA algorithm. The size and shape of the pores inserted in 3D RVE are based on the probability density functions generated. Effective elastic properties of C/C composite at the microscale are computed by finite element analysis (FE) based homogenization and taken as input for the next level of homogenization. The RVE at mesoscale is modeled using the information from SEM images, and FE-based homogenization is performed to compute the effective elastic properties of 8HS woven C/C composite. The effective elastic properties obtained from the numerical study are validated with the results of the uniaxial tensile test performed on 2D C/C composite. The effect of fiber volume fraction, yarn volume fraction, and porosity on elastic properties of 2D 8HS woven C/C composite are also assessed and presented in this study.
    • Download: (8.401Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Numerical Modeling of 2D C/C Composites Considering Pore Size Distribution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297229
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorO. S. Vishnu
    contributor authorG. S. Pavan
    date accessioned2024-04-27T22:40:33Z
    date available2024-04-27T22:40:33Z
    date issued2024/07/01
    identifier other10.1061-JAEEEZ.ASENG-5434.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297229
    description abstractThis study proposes a multiscale numerical modeling procedure to evaluate the elastic properties of two-dimensional (2D) eight-harness satin woven carbon/carbon (C/C) composites. The multiscale modeling technique consists of analysis at the microlevel and mesolevel. In microscale analysis, a 3D representative volume element (RVE) of C/C composite with carbon fiber, pyrolytic carbon, and pores is considered. The microstructure of the C/C composite is analyzed using scanning electron microscope (SEM) images. Statistical characterization of pore distribution inside the C/C composite is performed, and different probability density functions are generated for pores’ number, area, and aspect ratio inside the C/C composite. Carbon fibers and pores are inserted in the 3D RVE using the RSA algorithm. The size and shape of the pores inserted in 3D RVE are based on the probability density functions generated. Effective elastic properties of C/C composite at the microscale are computed by finite element analysis (FE) based homogenization and taken as input for the next level of homogenization. The RVE at mesoscale is modeled using the information from SEM images, and FE-based homogenization is performed to compute the effective elastic properties of 8HS woven C/C composite. The effective elastic properties obtained from the numerical study are validated with the results of the uniaxial tensile test performed on 2D C/C composite. The effect of fiber volume fraction, yarn volume fraction, and porosity on elastic properties of 2D 8HS woven C/C composite are also assessed and presented in this study.
    publisherASCE
    titleMultiscale Numerical Modeling of 2D C/C Composites Considering Pore Size Distribution
    typeJournal Article
    journal volume37
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5434
    journal fristpage04024029-1
    journal lastpage04024029-19
    page19
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian