YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Robust Active Fault-Tolerant Configuration Control for Spacecraft Formation via Learning RBFNN Approaches

    Source: Journal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 003::page 04024007-1
    Author:
    Rui Shu
    ,
    Qingxian Jia
    ,
    Yunhua Wu
    ,
    He Liao
    ,
    Chengxi Zhang
    DOI: 10.1061/JAEEEZ.ASENG-5262
    Publisher: ASCE
    Abstract: This paper studies the issue of learning radial basis function neural network (RBFNN)-based robust reconfigurable fault-tolerant configuration control for spacecraft formation flying (SFF) systems subject to thruster faults and space perturbations. To robustly reconstruct thruster faults, a novel learning RBFNN estimator is innovatively explored, in which the P-type iterative learning algorithm is utilized to online update the weight matrix of the RBFNN model and the H∞ control technique is adopted to attenuate the effect of space perturbations. Further, a learning RBFNN output-feedback fault-tolerant control (FTC) method is developed for spacecraft formation configuration maintenance with high accuracy, and the learning RBFNN algorithm is used to update and compensate the synthesized perturbation. Finally, a numerical example is simulated to verify the presented learning RBFNN-based spacecraft formation FTC approach is feasible and superior.
    • Download: (615.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Robust Active Fault-Tolerant Configuration Control for Spacecraft Formation via Learning RBFNN Approaches

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297210
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorRui Shu
    contributor authorQingxian Jia
    contributor authorYunhua Wu
    contributor authorHe Liao
    contributor authorChengxi Zhang
    date accessioned2024-04-27T22:40:03Z
    date available2024-04-27T22:40:03Z
    date issued2024/05/01
    identifier other10.1061-JAEEEZ.ASENG-5262.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297210
    description abstractThis paper studies the issue of learning radial basis function neural network (RBFNN)-based robust reconfigurable fault-tolerant configuration control for spacecraft formation flying (SFF) systems subject to thruster faults and space perturbations. To robustly reconstruct thruster faults, a novel learning RBFNN estimator is innovatively explored, in which the P-type iterative learning algorithm is utilized to online update the weight matrix of the RBFNN model and the H∞ control technique is adopted to attenuate the effect of space perturbations. Further, a learning RBFNN output-feedback fault-tolerant control (FTC) method is developed for spacecraft formation configuration maintenance with high accuracy, and the learning RBFNN algorithm is used to update and compensate the synthesized perturbation. Finally, a numerical example is simulated to verify the presented learning RBFNN-based spacecraft formation FTC approach is feasible and superior.
    publisherASCE
    titleRobust Active Fault-Tolerant Configuration Control for Spacecraft Formation via Learning RBFNN Approaches
    typeJournal Article
    journal volume37
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/JAEEEZ.ASENG-5262
    journal fristpage04024007-1
    journal lastpage04024007-11
    page11
    treeJournal of Aerospace Engineering:;2024:;Volume ( 037 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian