YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Temperature-Dependent SWCC Model for Unsaturated Soil

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005::page 04024071-1
    Author:
    Yang Xiao
    ,
    Shuang Liu
    ,
    Jinquan Shi
    ,
    Fang Liang
    ,
    Musharraf Zaman
    DOI: 10.1061/IJGNAI.GMENG-9406
    Publisher: ASCE
    Abstract: The soil–water characteristic curve (SWCC) model considering the temperature effect is significant in precisely predicting the relationship between the matric suction and degree of saturation in unsaturated soils in geotechnical and geoenvironmental engineering. In this work, we derived a new temperature-dependent wetting coefficient, incorporating a nonlinear temperature-dependent enthalpy of immersion per unit area. We introduce a simplified expression that successfully approximates the wetting coefficient for temperatures between 273.15 and 373.15 K. In addition, we propose a temperature-dependent matric suction equation and a temperature-dependent SWCC model. The new model comprehensively considers the temperature sensitivities of the water–air interface tension and wetting coefficient, which shows that an increase in temperature for a given matric suction leads to a decrease in the degree of saturation. The results illustrate that the new model is suitable for predicting the nonisothermal SWCC of unsaturated soils.
    • Download: (1.725Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Temperature-Dependent SWCC Model for Unsaturated Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297137
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYang Xiao
    contributor authorShuang Liu
    contributor authorJinquan Shi
    contributor authorFang Liang
    contributor authorMusharraf Zaman
    date accessioned2024-04-27T22:38:18Z
    date available2024-04-27T22:38:18Z
    date issued2024/05/01
    identifier other10.1061-IJGNAI.GMENG-9406.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297137
    description abstractThe soil–water characteristic curve (SWCC) model considering the temperature effect is significant in precisely predicting the relationship between the matric suction and degree of saturation in unsaturated soils in geotechnical and geoenvironmental engineering. In this work, we derived a new temperature-dependent wetting coefficient, incorporating a nonlinear temperature-dependent enthalpy of immersion per unit area. We introduce a simplified expression that successfully approximates the wetting coefficient for temperatures between 273.15 and 373.15 K. In addition, we propose a temperature-dependent matric suction equation and a temperature-dependent SWCC model. The new model comprehensively considers the temperature sensitivities of the water–air interface tension and wetting coefficient, which shows that an increase in temperature for a given matric suction leads to a decrease in the degree of saturation. The results illustrate that the new model is suitable for predicting the nonisothermal SWCC of unsaturated soils.
    publisherASCE
    titleTemperature-Dependent SWCC Model for Unsaturated Soil
    typeJournal Article
    journal volume24
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9406
    journal fristpage04024071-1
    journal lastpage04024071-9
    page9
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian