YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Failure Mechanism and Active Earth Pressure of Narrow Backfills behind Retaining Structures Rotating about the Base

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005::page 04024068-1
    Author:
    Hao-Biao Chen
    ,
    Fu-Quan Chen
    ,
    Chang Chen
    ,
    Dao-Liang Lai
    DOI: 10.1061/IJGNAI.GMENG-9370
    Publisher: ASCE
    Abstract: A series of model tests were conducted to simulate the active failure of narrow cohesionless backfills behind retaining walls rotating about the base (RB mode). The tests aimed to investigate the effect of wall displacement magnitude, backfill widths, and the inclinations of retaining walls and existing structures on the failure mechanism and earth pressure. The test results revealed that the rupture propagation follows a progressive top-down failure pattern and does not extend to the base of the wall under RB mode, contrasting with the assumptions of the existing theoretical solution. Notably, a narrower backfill exhibited multiple parallel shear bands in contrast to the semi-infinite backfill, highlighting the significant impact of backfill geometry on the orientation of these shear bands. Furthermore, the active earth pressure distribution under RB mode displayed an approximately linear trend, slightly reducing earth pressure near the base. The development of earth pressure suggested that the backfill reached the active limit state after the wall had experienced a displacement equal to 0.35% of its height (H). It was observed that the active earth pressure for a backfill width-to-height ratio (B/H) of 0.5 closely corresponded to values obtained through the Coulomb method. Moreover, the results indicated that the active earth pressure increased proportionally with an increase in the B/H ratio and a decrease in the inclinations of both the retaining structures and existing structures.
    • Download: (3.044Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Failure Mechanism and Active Earth Pressure of Narrow Backfills behind Retaining Structures Rotating about the Base

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297135
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHao-Biao Chen
    contributor authorFu-Quan Chen
    contributor authorChang Chen
    contributor authorDao-Liang Lai
    date accessioned2024-04-27T22:38:15Z
    date available2024-04-27T22:38:15Z
    date issued2024/05/01
    identifier other10.1061-IJGNAI.GMENG-9370.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297135
    description abstractA series of model tests were conducted to simulate the active failure of narrow cohesionless backfills behind retaining walls rotating about the base (RB mode). The tests aimed to investigate the effect of wall displacement magnitude, backfill widths, and the inclinations of retaining walls and existing structures on the failure mechanism and earth pressure. The test results revealed that the rupture propagation follows a progressive top-down failure pattern and does not extend to the base of the wall under RB mode, contrasting with the assumptions of the existing theoretical solution. Notably, a narrower backfill exhibited multiple parallel shear bands in contrast to the semi-infinite backfill, highlighting the significant impact of backfill geometry on the orientation of these shear bands. Furthermore, the active earth pressure distribution under RB mode displayed an approximately linear trend, slightly reducing earth pressure near the base. The development of earth pressure suggested that the backfill reached the active limit state after the wall had experienced a displacement equal to 0.35% of its height (H). It was observed that the active earth pressure for a backfill width-to-height ratio (B/H) of 0.5 closely corresponded to values obtained through the Coulomb method. Moreover, the results indicated that the active earth pressure increased proportionally with an increase in the B/H ratio and a decrease in the inclinations of both the retaining structures and existing structures.
    publisherASCE
    titleFailure Mechanism and Active Earth Pressure of Narrow Backfills behind Retaining Structures Rotating about the Base
    typeJournal Article
    journal volume24
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9370
    journal fristpage04024068-1
    journal lastpage04024068-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian