YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimized Design of Foundations on Soft Soil Reinforced by Floating Granular Columns

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005::page 04024082-1
    Author:
    Mounir Bouassida
    ,
    Souhir Ellouze
    ,
    Khaoula Chenche
    ,
    Meriem Fakhreddine Bouali
    DOI: 10.1061/IJGNAI.GMENG-9259
    Publisher: ASCE
    Abstract: This paper studies the design of foundations built on thick compressible soft soil layers that are reinforced by floating columns. Based on a recent methodology, the suggested design combines the bearing capacity and settlement verifications to provide an optimized improvement area ratio (IAR). Then, an optimized length for the floating columns is obtained by introducing the admissible long-term settlement of the unreinforced compressible sublayers and assuming that the total short-term settlement vanishes at the end of project construction. This paper focuses on the variation in the consolidation settlement of the unreinforced compressible sublayer versus the length of the floating columns. The discussion of this design methodology highlights the feasibility of a potential reinforcement solution when producing a cost-effective design, which assures an optimized IAR within the reinforced upper layer and an optimized length for the floating columns. Using typical case history data, a parametric study showed that reinforcement with end-bearing columns is not required to control the admissible long-term settlement. Instead, the suggested design method enables the determination of the optimized length of the floating columns, which satisfies the admissible residual settlement and consolidation time. The comparison between the proposed results and numerical predictions by Plaxis 2D shows good agreement, which confirms the feasibility of an optimized length for floating columns and avoids the systematic adoption of end-bearing reinforcement in columns.
    • Download: (924.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimized Design of Foundations on Soft Soil Reinforced by Floating Granular Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297117
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMounir Bouassida
    contributor authorSouhir Ellouze
    contributor authorKhaoula Chenche
    contributor authorMeriem Fakhreddine Bouali
    date accessioned2024-04-27T22:37:46Z
    date available2024-04-27T22:37:46Z
    date issued2024/05/01
    identifier other10.1061-IJGNAI.GMENG-9259.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297117
    description abstractThis paper studies the design of foundations built on thick compressible soft soil layers that are reinforced by floating columns. Based on a recent methodology, the suggested design combines the bearing capacity and settlement verifications to provide an optimized improvement area ratio (IAR). Then, an optimized length for the floating columns is obtained by introducing the admissible long-term settlement of the unreinforced compressible sublayers and assuming that the total short-term settlement vanishes at the end of project construction. This paper focuses on the variation in the consolidation settlement of the unreinforced compressible sublayer versus the length of the floating columns. The discussion of this design methodology highlights the feasibility of a potential reinforcement solution when producing a cost-effective design, which assures an optimized IAR within the reinforced upper layer and an optimized length for the floating columns. Using typical case history data, a parametric study showed that reinforcement with end-bearing columns is not required to control the admissible long-term settlement. Instead, the suggested design method enables the determination of the optimized length of the floating columns, which satisfies the admissible residual settlement and consolidation time. The comparison between the proposed results and numerical predictions by Plaxis 2D shows good agreement, which confirms the feasibility of an optimized length for floating columns and avoids the systematic adoption of end-bearing reinforcement in columns.
    publisherASCE
    titleOptimized Design of Foundations on Soft Soil Reinforced by Floating Granular Columns
    typeJournal Article
    journal volume24
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9259
    journal fristpage04024082-1
    journal lastpage04024082-9
    page9
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian