YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Analysis of Slope Stability Considering Geomaterial Dilatancy

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 004::page 04024029-1
    Author:
    Shihong Hu
    ,
    Lianheng Zhao
    ,
    Liang Li
    ,
    Shi Zuo
    ,
    Zhouzhou Xie
    ,
    Nan Qiao
    DOI: 10.1061/IJGNAI.GMENG-9239
    Publisher: ASCE
    Abstract: Shear dilation occurs during the failure of geomaterials subjected to shear stress. To account for the dilatancy and nonlinearity of geomaterials, a nonlinear upper-bound analysis method was proposed for evaluating the stability of homogeneous slopes based on the coaxial nonassociated flow rule. The rotational failure mechanism of a homogeneous slope was established within the kinematic approach of limit analysis, using the Davis approach to convert the nonassociated flow rule into an associated one. By applying the variation principle, ordinary differential equations of the potential sliding surface and its corresponding stress were derived, which were then solved using a fourth-order Runge–Kutta method in conjunction with appropriate boundary conditions. Furthermore, the balance equation was derived from the virtual power principle, and the critical height of the slope was calculated using a particle swarm optimization algorithm. The strength reduction technique was then introduced to determine the factor of safety of the slope. The accuracy and effectiveness of the proposed nonlinear upper-bound variation method for evaluating the stability of homogeneous slopes under nonassociated flow rule and nonlinear failure criteria were verified when compared with existing studies and techniques, such as the finite-element limit analysis and the finite difference method. This study accurately reflects the nonlinearity and dilatancy of geomaterials and avoids assumptions regarding the sliding surface and its corresponding stress, making it a valuable reference for future research.
    • Download: (1.096Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Analysis of Slope Stability Considering Geomaterial Dilatancy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297112
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorShihong Hu
    contributor authorLianheng Zhao
    contributor authorLiang Li
    contributor authorShi Zuo
    contributor authorZhouzhou Xie
    contributor authorNan Qiao
    date accessioned2024-04-27T22:37:39Z
    date available2024-04-27T22:37:39Z
    date issued2024/04/01
    identifier other10.1061-IJGNAI.GMENG-9239.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297112
    description abstractShear dilation occurs during the failure of geomaterials subjected to shear stress. To account for the dilatancy and nonlinearity of geomaterials, a nonlinear upper-bound analysis method was proposed for evaluating the stability of homogeneous slopes based on the coaxial nonassociated flow rule. The rotational failure mechanism of a homogeneous slope was established within the kinematic approach of limit analysis, using the Davis approach to convert the nonassociated flow rule into an associated one. By applying the variation principle, ordinary differential equations of the potential sliding surface and its corresponding stress were derived, which were then solved using a fourth-order Runge–Kutta method in conjunction with appropriate boundary conditions. Furthermore, the balance equation was derived from the virtual power principle, and the critical height of the slope was calculated using a particle swarm optimization algorithm. The strength reduction technique was then introduced to determine the factor of safety of the slope. The accuracy and effectiveness of the proposed nonlinear upper-bound variation method for evaluating the stability of homogeneous slopes under nonassociated flow rule and nonlinear failure criteria were verified when compared with existing studies and techniques, such as the finite-element limit analysis and the finite difference method. This study accurately reflects the nonlinearity and dilatancy of geomaterials and avoids assumptions regarding the sliding surface and its corresponding stress, making it a valuable reference for future research.
    publisherASCE
    titleNonlinear Analysis of Slope Stability Considering Geomaterial Dilatancy
    typeJournal Article
    journal volume24
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9239
    journal fristpage04024029-1
    journal lastpage04024029-12
    page12
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian