YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Thermal-Induced Buckling of Offshore Pipelines in Clay Using the Effective Stress RITSS Method in Three Dimensions

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 006::page 04024089-1
    Author:
    Umashankaran Satchithananthan
    ,
    Fook Hou Lee
    ,
    Kai Yao
    DOI: 10.1061/IJGNAI.GMENG-9214
    Publisher: ASCE
    Abstract: This paper presents a numerical study to model the thermal-induced pipeline buckling–soil interaction as a demonstration of the feasibility of modeling global buckling using an effective stress remeshing and interpolation technique with a small strain (RITSS) approach in 3D. The numerical results are compared with a previously published large-scale laboratory test, centrifuge, and numerical models. The influence of embedment depth, pipe weight, and pipe–soil interface roughness on the global pipe–soil response is investigated. The current study unveiled some of the key behaviors of partially embedded and buried pipes during thermal expansion. First, the expansion-induced displacements comprise vertical and lateral displacements. Heavy pipes dive deeper into the soil, whereas lightweight pipes rise above their initial position as they move laterally for partially embedded and buried pipes. Furthermore, expansion-induced displacements become insignificant as the burial depth increases. The soil in front of the buried pipe flows up and above to its rear end as the expansion-induced displacements increase. Moreover, lateral buckling occurs in buried pipes even though the lateral out-of-straightness of the pipe is within the recommended limit set by the Det Norske Veritas (DNV) guideline. Finally, the pipe–soil interface roughness significantly influences the undrained lateral resistance for partially embedded pipes.
    • Download: (3.242Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Thermal-Induced Buckling of Offshore Pipelines in Clay Using the Effective Stress RITSS Method in Three Dimensions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297107
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorUmashankaran Satchithananthan
    contributor authorFook Hou Lee
    contributor authorKai Yao
    date accessioned2024-04-27T22:37:28Z
    date available2024-04-27T22:37:28Z
    date issued2024/06/01
    identifier other10.1061-IJGNAI.GMENG-9214.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297107
    description abstractThis paper presents a numerical study to model the thermal-induced pipeline buckling–soil interaction as a demonstration of the feasibility of modeling global buckling using an effective stress remeshing and interpolation technique with a small strain (RITSS) approach in 3D. The numerical results are compared with a previously published large-scale laboratory test, centrifuge, and numerical models. The influence of embedment depth, pipe weight, and pipe–soil interface roughness on the global pipe–soil response is investigated. The current study unveiled some of the key behaviors of partially embedded and buried pipes during thermal expansion. First, the expansion-induced displacements comprise vertical and lateral displacements. Heavy pipes dive deeper into the soil, whereas lightweight pipes rise above their initial position as they move laterally for partially embedded and buried pipes. Furthermore, expansion-induced displacements become insignificant as the burial depth increases. The soil in front of the buried pipe flows up and above to its rear end as the expansion-induced displacements increase. Moreover, lateral buckling occurs in buried pipes even though the lateral out-of-straightness of the pipe is within the recommended limit set by the Det Norske Veritas (DNV) guideline. Finally, the pipe–soil interface roughness significantly influences the undrained lateral resistance for partially embedded pipes.
    publisherASCE
    titleModeling the Thermal-Induced Buckling of Offshore Pipelines in Clay Using the Effective Stress RITSS Method in Three Dimensions
    typeJournal Article
    journal volume24
    journal issue6
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-9214
    journal fristpage04024089-1
    journal lastpage04024089-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian