YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Behavior of Bamboo-Reinforced Sulfur Concrete Beams Using Martian Soil Simulant

    Source: Practice Periodical on Structural Design and Construction:;2024:;Volume ( 029 ):;issue: 002::page 04024013-1
    Author:
    Matthew Soltani
    ,
    Mitchell Thiel
    ,
    Patrick Fishburne
    DOI: 10.1061/PPSCFX.SCENG-1482
    Publisher: ASCE
    Abstract: Mars colonization signifies the upcoming frontier in space exploration and construction. Leveraging materials native to Mars presents a sustainable strategy for building habitats. Sulfur concrete, which can be synthesized using Martian soil, surfaces as a promising material in this context. While concrete benefits from reinforcement, shipping it from Earth is prohibitively expensive. As a solution, this study explores bamboo bars as tensile reinforcements in sulfur concrete beams, examining two distinct beam sizes. The bamboo bars’ ultimate tensile strength and density stand at roughly 38% and 9.5% of A36 mild steel’s benchmarks, respectively. Intriguingly, bamboo-reinforced beams reported a 30% to 60% shear strength augmentation compared to their nonreinforced counterparts. The research also delved into the beam size effect, revealing that larger bamboo-reinforced beams boast an 87% enhancement in postcracking stiffness relative to their smaller counterparts.
    • Download: (1.514Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Behavior of Bamboo-Reinforced Sulfur Concrete Beams Using Martian Soil Simulant

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4297074
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorMatthew Soltani
    contributor authorMitchell Thiel
    contributor authorPatrick Fishburne
    date accessioned2024-04-27T22:36:45Z
    date available2024-04-27T22:36:45Z
    date issued2024/05/01
    identifier other10.1061-PPSCFX.SCENG-1482.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4297074
    description abstractMars colonization signifies the upcoming frontier in space exploration and construction. Leveraging materials native to Mars presents a sustainable strategy for building habitats. Sulfur concrete, which can be synthesized using Martian soil, surfaces as a promising material in this context. While concrete benefits from reinforcement, shipping it from Earth is prohibitively expensive. As a solution, this study explores bamboo bars as tensile reinforcements in sulfur concrete beams, examining two distinct beam sizes. The bamboo bars’ ultimate tensile strength and density stand at roughly 38% and 9.5% of A36 mild steel’s benchmarks, respectively. Intriguingly, bamboo-reinforced beams reported a 30% to 60% shear strength augmentation compared to their nonreinforced counterparts. The research also delved into the beam size effect, revealing that larger bamboo-reinforced beams boast an 87% enhancement in postcracking stiffness relative to their smaller counterparts.
    publisherASCE
    titleShear Behavior of Bamboo-Reinforced Sulfur Concrete Beams Using Martian Soil Simulant
    typeJournal Article
    journal volume29
    journal issue2
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/PPSCFX.SCENG-1482
    journal fristpage04024013-1
    journal lastpage04024013-9
    page9
    treePractice Periodical on Structural Design and Construction:;2024:;Volume ( 029 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian