YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Relating Geotechnical Sediment Properties and Erodibility at a Sandy Beach

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2024:;Volume ( 150 ):;issue: 004::page 04024006-1
    Author:
    Nicola C. Brilli
    ,
    Nina Stark
    ,
    Celso Castro-Bolinaga
    DOI: 10.1061/JWPED5.WWENG-2016
    Publisher: ASCE
    Abstract: Geotechnical sediment properties, morphological change, and hydrodynamics were measured as part of the During Nearshore Event Experiment (DUNEX) in October 2021 at the sandy Atlantic side beach in Duck, North Carolina. In this study, direct relationships were explored between in situ soil properties and direct erodibility measurements in the context of morphological change. Moisture content, grain size, total density, relative density, void ratio, and sediment strength were compared to bed-level change using ground-based LiDAR and erodibility parameters from laboratory jet erosion tests (JETs) conducted along a cross-shore transect stretching from the dune toe to the lower intertidal zone. Directly relating changes in sediment properties to changes in morphology from LiDAR proved inconclusive due to the complex interactions between sediments, hydrodynamics, and morphology, even on a local scale, but initial observations and possibly impacting factors were discussed. Void ratio and total unit weight correlated well with the detachment rate coefficient from JETs, with denser sediments testing as less erodible. In situ sediment strength measurements related—as expected—to total unit weight, void ratio, and water content, with increases in firmness factor associated with increases in total unit weight, void ratio, and water content. These strength measurements were also found to have a correlation with the detachment coefficient from the JET, with stronger/firmer sediments being less erodible than weaker ones.
    • Download: (1.026Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Relating Geotechnical Sediment Properties and Erodibility at a Sandy Beach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296961
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorNicola C. Brilli
    contributor authorNina Stark
    contributor authorCelso Castro-Bolinaga
    date accessioned2024-04-27T22:34:05Z
    date available2024-04-27T22:34:05Z
    date issued2024/07/01
    identifier other10.1061-JWPED5.WWENG-2016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296961
    description abstractGeotechnical sediment properties, morphological change, and hydrodynamics were measured as part of the During Nearshore Event Experiment (DUNEX) in October 2021 at the sandy Atlantic side beach in Duck, North Carolina. In this study, direct relationships were explored between in situ soil properties and direct erodibility measurements in the context of morphological change. Moisture content, grain size, total density, relative density, void ratio, and sediment strength were compared to bed-level change using ground-based LiDAR and erodibility parameters from laboratory jet erosion tests (JETs) conducted along a cross-shore transect stretching from the dune toe to the lower intertidal zone. Directly relating changes in sediment properties to changes in morphology from LiDAR proved inconclusive due to the complex interactions between sediments, hydrodynamics, and morphology, even on a local scale, but initial observations and possibly impacting factors were discussed. Void ratio and total unit weight correlated well with the detachment rate coefficient from JETs, with denser sediments testing as less erodible. In situ sediment strength measurements related—as expected—to total unit weight, void ratio, and water content, with increases in firmness factor associated with increases in total unit weight, void ratio, and water content. These strength measurements were also found to have a correlation with the detachment coefficient from the JET, with stronger/firmer sediments being less erodible than weaker ones.
    publisherASCE
    titleRelating Geotechnical Sediment Properties and Erodibility at a Sandy Beach
    typeJournal Article
    journal volume150
    journal issue4
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/JWPED5.WWENG-2016
    journal fristpage04024006-1
    journal lastpage04024006-10
    page10
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2024:;Volume ( 150 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian