YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    LEO Augmentation in Large-Scale Ionosphere-Float PPP-RTK Positioning

    Source: Journal of Surveying Engineering:;2024:;Volume ( 150 ):;issue: 002::page 04024001-1
    Author:
    Kan Wang
    ,
    Ahmed El-Mowafy
    ,
    Fang Cheng
    ,
    Xuhai Yang
    DOI: 10.1061/JSUED2.SUENG-1414
    Publisher: ASCE
    Abstract: Precise point positioning-real-time kinematic (PPP-RTK) positioning combines the advantages of PPP and RTK, which enables the integer ambiguity resolution (IAR) without requiring a reference station nearby. The ionospheric corrections are delivered to users to enable fast IAR. For large-scale networks, precise interpolation of ionospheric delays is challenging. The ionospheric delays are often independently estimated by the user, in the so-called ionosphere-float mode. The augmentation of low Earth orbit (LEO) satellites can bridge this shortcoming thanks to their fast speeds and the resulting rapid geometry change. Using 30-s real dual-frequency Global Positioning System (GPS) and Beidou Navigation Satellite System (BDS) observations within a large-scale network of thousands of kilometers, this contribution tests the effects of LEO augmentation using simulated dual-frequency LEO signals from the navigation-oriented LEO constellation, CentiSpace. Results showed that the LEO augmentation makes the solution convergence less sensitive to the original Global Navigation Satellite System (GNSS)-based model strength. The improvements in the convergence times are significant. For example, in the kinematic mode, the convergence time of the 90% lines of the GPS/BDS-combined ambiguity-float horizontal solutions to 0.05 m is shortened from more than 60 to 3.5 min, and that of the GPS-only partial ambiguity resolution (PAR)-enabled horizontal solutions is shortened from more than 20 to 4.5 min. In both the ambiguity-float and PAR-enabled cases, the 68.27% (1σ) lines of both the kinematic and static horizontal and height errors can converge to 0.05 m within 4 min, and for the 90% lines, within 6.5 min in all cases. The 90% line of the GPS/BDS/LEO combined PAR-enabled solutions can converge to 0.05 m within 2.5 and 3 min in the horizontal and up direction, respectively. Results also showed that enlarged projection of the mismodeled biases on the user coordinates were observed in the LEO-augmented scenario after convergence or ambiguity resolution. This is mainly due to the lower orbital height and low elevation angles of the LEO satellites, which requires further research when real LEO navigation signals are available.
    • Download: (3.271Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      LEO Augmentation in Large-Scale Ionosphere-Float PPP-RTK Positioning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296855
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorKan Wang
    contributor authorAhmed El-Mowafy
    contributor authorFang Cheng
    contributor authorXuhai Yang
    date accessioned2024-04-27T22:31:29Z
    date available2024-04-27T22:31:29Z
    date issued2024/05/01
    identifier other10.1061-JSUED2.SUENG-1414.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296855
    description abstractPrecise point positioning-real-time kinematic (PPP-RTK) positioning combines the advantages of PPP and RTK, which enables the integer ambiguity resolution (IAR) without requiring a reference station nearby. The ionospheric corrections are delivered to users to enable fast IAR. For large-scale networks, precise interpolation of ionospheric delays is challenging. The ionospheric delays are often independently estimated by the user, in the so-called ionosphere-float mode. The augmentation of low Earth orbit (LEO) satellites can bridge this shortcoming thanks to their fast speeds and the resulting rapid geometry change. Using 30-s real dual-frequency Global Positioning System (GPS) and Beidou Navigation Satellite System (BDS) observations within a large-scale network of thousands of kilometers, this contribution tests the effects of LEO augmentation using simulated dual-frequency LEO signals from the navigation-oriented LEO constellation, CentiSpace. Results showed that the LEO augmentation makes the solution convergence less sensitive to the original Global Navigation Satellite System (GNSS)-based model strength. The improvements in the convergence times are significant. For example, in the kinematic mode, the convergence time of the 90% lines of the GPS/BDS-combined ambiguity-float horizontal solutions to 0.05 m is shortened from more than 60 to 3.5 min, and that of the GPS-only partial ambiguity resolution (PAR)-enabled horizontal solutions is shortened from more than 20 to 4.5 min. In both the ambiguity-float and PAR-enabled cases, the 68.27% (1σ) lines of both the kinematic and static horizontal and height errors can converge to 0.05 m within 4 min, and for the 90% lines, within 6.5 min in all cases. The 90% line of the GPS/BDS/LEO combined PAR-enabled solutions can converge to 0.05 m within 2.5 and 3 min in the horizontal and up direction, respectively. Results also showed that enlarged projection of the mismodeled biases on the user coordinates were observed in the LEO-augmented scenario after convergence or ambiguity resolution. This is mainly due to the lower orbital height and low elevation angles of the LEO satellites, which requires further research when real LEO navigation signals are available.
    publisherASCE
    titleLEO Augmentation in Large-Scale Ionosphere-Float PPP-RTK Positioning
    typeJournal Article
    journal volume150
    journal issue2
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/JSUED2.SUENG-1414
    journal fristpage04024001-1
    journal lastpage04024001-13
    page13
    treeJournal of Surveying Engineering:;2024:;Volume ( 150 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian