YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Performance Assessment of Steel EBFs with Conventional and Replaceable Yielding Links Designed with ASCE 7-16

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 005::page 04024032-1
    Author:
    Pedram Mortazavi
    ,
    Oh-Sung Kwon
    ,
    Constantin Christopoulos
    DOI: 10.1061/JSENDH.STENG-13093
    Publisher: ASCE
    Abstract: This paper presents an extensive numerical study on the seismic performance of steel eccentrically braced frames (EBFs) designed according to the ASCE 7-16 standard. A series of EBF building structures ranging from 2 to 12 stories located in downtown Los Angeles are designed with different yielding links, including conventional and replaceable links. The performance of the structures is investigated through nonlinear time-history analyses (NLTHAs) under a suite of 40 ground motions, selected and scaled to match the target uniform hazard spectrum. The peak deformations are first examined to assess the performance of the buildings as well as the design procedure. Residual deformations are also evaluated and critically compared with acceptable limits, to provide insight into the downtime and recovery time of EBFs after major earthquakes. Previous studies have demonstrated that the response of stable yielding systems to major earthquakes is often accompanied by significant residual deformations, and that residual drifts exceeding 0.5% can cause hindrance to the buildings occupants. In EBFs, in addition to residual drifts, residual link rotations are also relevant and expected to be more severe due to the localization of inelastic deformations in the yielding link. For replaceable modular yielding links, significant residual link rotations after major earthquakes will hinder repairs and the link replacement process, which is one of the important design objectives. The performance of EBFs is also compared with what was observed in previous studies for buckling restrained braced frames and special moment resisting frames. In the end, the results from the extensive NLTHAs are used to establish a relationship between peak drifts and peak link rotations in EBFs.
    • Download: (6.911Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Performance Assessment of Steel EBFs with Conventional and Replaceable Yielding Links Designed with ASCE 7-16

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296845
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorPedram Mortazavi
    contributor authorOh-Sung Kwon
    contributor authorConstantin Christopoulos
    date accessioned2024-04-27T22:31:16Z
    date available2024-04-27T22:31:16Z
    date issued2024/05/01
    identifier other10.1061-JSENDH.STENG-13093.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296845
    description abstractThis paper presents an extensive numerical study on the seismic performance of steel eccentrically braced frames (EBFs) designed according to the ASCE 7-16 standard. A series of EBF building structures ranging from 2 to 12 stories located in downtown Los Angeles are designed with different yielding links, including conventional and replaceable links. The performance of the structures is investigated through nonlinear time-history analyses (NLTHAs) under a suite of 40 ground motions, selected and scaled to match the target uniform hazard spectrum. The peak deformations are first examined to assess the performance of the buildings as well as the design procedure. Residual deformations are also evaluated and critically compared with acceptable limits, to provide insight into the downtime and recovery time of EBFs after major earthquakes. Previous studies have demonstrated that the response of stable yielding systems to major earthquakes is often accompanied by significant residual deformations, and that residual drifts exceeding 0.5% can cause hindrance to the buildings occupants. In EBFs, in addition to residual drifts, residual link rotations are also relevant and expected to be more severe due to the localization of inelastic deformations in the yielding link. For replaceable modular yielding links, significant residual link rotations after major earthquakes will hinder repairs and the link replacement process, which is one of the important design objectives. The performance of EBFs is also compared with what was observed in previous studies for buckling restrained braced frames and special moment resisting frames. In the end, the results from the extensive NLTHAs are used to establish a relationship between peak drifts and peak link rotations in EBFs.
    publisherASCE
    titleSeismic Performance Assessment of Steel EBFs with Conventional and Replaceable Yielding Links Designed with ASCE 7-16
    typeJournal Article
    journal volume150
    journal issue5
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-13093
    journal fristpage04024032-1
    journal lastpage04024032-18
    page18
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian