YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cyclic Behavior of Four-Limbed Circular CFST Latticed Beam-Columns

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003::page 04024006-1
    Author:
    You-Fu Yang
    ,
    Feng Fu
    ,
    Min Liu
    DOI: 10.1061/JSENDH.STENG-13073
    Publisher: ASCE
    Abstract: Experimental tests to investigate the behavior of four-limbed circular concrete-filled steel tube (CFST) latticed beam-columns under constant axial compression and cyclic lateral force were carried out. Attention was paid to the effect of diameter-to-thickness ratio of limb tube D/T (51.5 and 24.9), axial compression level n (from 0.05 to 0.5) and type of limb [circular CFST and steel circular hollow section (CHS)] on the overall behavior, failure modes and force versus deformation relationship of the specimens. Additionally, the cyclic deterioration of stiffness, ductility and accumulated energy dissipation of the specimens were assessed for seismic design. According to this experimental study, it is found that, due to the interaction between limb tube and its concrete core, the seismic resistance of composite specimens is better than that of steel counterparts. Moreover, the seismic resistance of composite specimens generally reduces with the increase of D/T and n. A finite element (FE) model is further established to replicate the behavior of the specimens, and the simulated cyclic behavior of four-limbed circular CFST latticed beam-columns subjected to constant axial compression and cyclic lateral force agree well with experimental results. Parametric study on the lateral force versus displacement hysteretic curve of four-limbed circular CFST latticed beam-columns was performed using the verified FE model. Finally, an accurate restoring force model (RFM) to predict the lateral force versus displacement relationship of four-limbed circular CFST latticed beam-columns is developed, and the predictions are in good agreement with the numerical and experimental results.
    • Download: (11.94Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cyclic Behavior of Four-Limbed Circular CFST Latticed Beam-Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296844
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYou-Fu Yang
    contributor authorFeng Fu
    contributor authorMin Liu
    date accessioned2024-04-27T22:31:16Z
    date available2024-04-27T22:31:16Z
    date issued2024/03/01
    identifier other10.1061-JSENDH.STENG-13073.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296844
    description abstractExperimental tests to investigate the behavior of four-limbed circular concrete-filled steel tube (CFST) latticed beam-columns under constant axial compression and cyclic lateral force were carried out. Attention was paid to the effect of diameter-to-thickness ratio of limb tube D/T (51.5 and 24.9), axial compression level n (from 0.05 to 0.5) and type of limb [circular CFST and steel circular hollow section (CHS)] on the overall behavior, failure modes and force versus deformation relationship of the specimens. Additionally, the cyclic deterioration of stiffness, ductility and accumulated energy dissipation of the specimens were assessed for seismic design. According to this experimental study, it is found that, due to the interaction between limb tube and its concrete core, the seismic resistance of composite specimens is better than that of steel counterparts. Moreover, the seismic resistance of composite specimens generally reduces with the increase of D/T and n. A finite element (FE) model is further established to replicate the behavior of the specimens, and the simulated cyclic behavior of four-limbed circular CFST latticed beam-columns subjected to constant axial compression and cyclic lateral force agree well with experimental results. Parametric study on the lateral force versus displacement hysteretic curve of four-limbed circular CFST latticed beam-columns was performed using the verified FE model. Finally, an accurate restoring force model (RFM) to predict the lateral force versus displacement relationship of four-limbed circular CFST latticed beam-columns is developed, and the predictions are in good agreement with the numerical and experimental results.
    publisherASCE
    titleCyclic Behavior of Four-Limbed Circular CFST Latticed Beam-Columns
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-13073
    journal fristpage04024006-1
    journal lastpage04024006-20
    page20
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian