YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Vulnerability of Reinforced Concrete Frame Structures: Obtaining Plan or Vertical Mass Irregularity from Structure Use Change

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003::page 04023243-1
    Author:
    Amr Ghanem
    ,
    Young-Joo Lee
    ,
    Do-Soo Moon
    DOI: 10.1061/JSENDH.STENG-12440
    Publisher: ASCE
    Abstract: Changes in a structure’s use can have a significant impact on distribution of live loads, both in the plan and elevation of a building. Unevenly distributed live loads can introduce variations in mass, causing irregularities in the structure and making it more susceptible to damage during earthquakes. Previous studies have extensively investigated the seismic vulnerability of structurally irregular buildings. However, due to computational challenges, simplified two-dimensional models are commonly employed, which fail to accurately capture the nonlinear interaction between torsional and lateral responses, thereby limiting their ability to reflect the actual structural behavior. This research focuses on examining the seismic fragility of reinforced concrete frames that exhibit mass irregularities in the elevation or plan caused by the change in structural usage. For accurate vulnerability evaluation, this research employs comprehensive three-dimensional models of reinforced concrete irregular structures. A total of 21 frame models encompassing various degrees of vertical and in-plan irregularities resulting from different scenarios of live-load distribution were studied. Nonlinear dynamic response history analysis was conducted with 10 earthquake input ground motions. To assess the vulnerability of the studied structures against the given earthquakes comprehensively, the concept of a fragility surface was introduced. The fragility surface is derived from fragility curves corresponding to various damage limit states, providing a complete overview of the seismic vulnerability of the structure in terms of peak ground accelerations and allowable drift ratios. In this study, eight allowable drift ratios were defined to establish failure limit-state conditions. The seismic vulnerability of all assumed building usage scenarios ware quantified, and this study highlights that uneven structure use in the regular structure can significantly affect its seismic performance. The findings of this study can contribute to a better understanding of the novel aspects related to the seismic behavior of irregular structures, enhancing our knowledge in this field.
    • Download: (4.236Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Vulnerability of Reinforced Concrete Frame Structures: Obtaining Plan or Vertical Mass Irregularity from Structure Use Change

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296760
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAmr Ghanem
    contributor authorYoung-Joo Lee
    contributor authorDo-Soo Moon
    date accessioned2024-04-27T22:29:04Z
    date available2024-04-27T22:29:04Z
    date issued2024/03/01
    identifier other10.1061-JSENDH.STENG-12440.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296760
    description abstractChanges in a structure’s use can have a significant impact on distribution of live loads, both in the plan and elevation of a building. Unevenly distributed live loads can introduce variations in mass, causing irregularities in the structure and making it more susceptible to damage during earthquakes. Previous studies have extensively investigated the seismic vulnerability of structurally irregular buildings. However, due to computational challenges, simplified two-dimensional models are commonly employed, which fail to accurately capture the nonlinear interaction between torsional and lateral responses, thereby limiting their ability to reflect the actual structural behavior. This research focuses on examining the seismic fragility of reinforced concrete frames that exhibit mass irregularities in the elevation or plan caused by the change in structural usage. For accurate vulnerability evaluation, this research employs comprehensive three-dimensional models of reinforced concrete irregular structures. A total of 21 frame models encompassing various degrees of vertical and in-plan irregularities resulting from different scenarios of live-load distribution were studied. Nonlinear dynamic response history analysis was conducted with 10 earthquake input ground motions. To assess the vulnerability of the studied structures against the given earthquakes comprehensively, the concept of a fragility surface was introduced. The fragility surface is derived from fragility curves corresponding to various damage limit states, providing a complete overview of the seismic vulnerability of the structure in terms of peak ground accelerations and allowable drift ratios. In this study, eight allowable drift ratios were defined to establish failure limit-state conditions. The seismic vulnerability of all assumed building usage scenarios ware quantified, and this study highlights that uneven structure use in the regular structure can significantly affect its seismic performance. The findings of this study can contribute to a better understanding of the novel aspects related to the seismic behavior of irregular structures, enhancing our knowledge in this field.
    publisherASCE
    titleSeismic Vulnerability of Reinforced Concrete Frame Structures: Obtaining Plan or Vertical Mass Irregularity from Structure Use Change
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-12440
    journal fristpage04023243-1
    journal lastpage04023243-13
    page13
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian