YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Strength and Crack Width Control of Concrete Beams with High-Strength Shear Reinforcement

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003::page 04024013-1
    Author:
    Yu-Chen Ou
    ,
    Cong-Thanh Bui
    DOI: 10.1061/JSENDH.STENG-12397
    Publisher: ASCE
    Abstract: There is a potential to reduce steel tonnage for construction through the use of high-strength steel reinforcement. However, the current version of the ACI 318 code limits the yield strength of reinforcement that could be used for shear design under gravity load conditions to 420 MPa to control diagonal crack widths. This limit is increased to 550 MPa for resisting seismic shear in special moment frames. In the current study, 12 full-scale RC beam specimens were tested to investigate the shear behavior of RC beams with high-strength SD790 (fys=790  MPa) shear reinforcement. The test variables considered in the experimental study were shear-span-to-depth ratio, stirrup spacing, stirrup yield strength, concrete compressive strength, and longitudinal reinforcement ratio. The test results of this research and those collected from the literature showed that the stress limit of the ACI 318 shear strength equations could be increased to 600 MPa for shear strength calculation. The stress limit of 790 MPa produced conservative predictions for most of the test data and for all the data if the strength reduction factor for shear design was considered. However, the degree of conservatism was significantly reduced. Also, an equation to estimate the maximum shear crack width was proposed. The proposed crack-width equation was able to predict the crack widths observed in the current and other reference studies with reasonable accuracy.
    • Download: (2.532Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Strength and Crack Width Control of Concrete Beams with High-Strength Shear Reinforcement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296756
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorYu-Chen Ou
    contributor authorCong-Thanh Bui
    date accessioned2024-04-27T22:28:58Z
    date available2024-04-27T22:28:58Z
    date issued2024/03/01
    identifier other10.1061-JSENDH.STENG-12397.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296756
    description abstractThere is a potential to reduce steel tonnage for construction through the use of high-strength steel reinforcement. However, the current version of the ACI 318 code limits the yield strength of reinforcement that could be used for shear design under gravity load conditions to 420 MPa to control diagonal crack widths. This limit is increased to 550 MPa for resisting seismic shear in special moment frames. In the current study, 12 full-scale RC beam specimens were tested to investigate the shear behavior of RC beams with high-strength SD790 (fys=790  MPa) shear reinforcement. The test variables considered in the experimental study were shear-span-to-depth ratio, stirrup spacing, stirrup yield strength, concrete compressive strength, and longitudinal reinforcement ratio. The test results of this research and those collected from the literature showed that the stress limit of the ACI 318 shear strength equations could be increased to 600 MPa for shear strength calculation. The stress limit of 790 MPa produced conservative predictions for most of the test data and for all the data if the strength reduction factor for shear design was considered. However, the degree of conservatism was significantly reduced. Also, an equation to estimate the maximum shear crack width was proposed. The proposed crack-width equation was able to predict the crack widths observed in the current and other reference studies with reasonable accuracy.
    publisherASCE
    titleShear Strength and Crack Width Control of Concrete Beams with High-Strength Shear Reinforcement
    typeJournal Article
    journal volume150
    journal issue3
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-12397
    journal fristpage04024013-1
    journal lastpage04024013-19
    page19
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian