YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lateral Resistant Behavior of Grid-Reinforced Steel Corrugated Shear Walls

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 006::page 04024047-1
    Author:
    Chao Dou
    ,
    Yi Ru
    ,
    Zi-Qin Jiang
    ,
    Yan Wang
    DOI: 10.1061/JSENDH.STENG-12285
    Publisher: ASCE
    Abstract: This paper investigated the lateral resistant behavior of grid-reinforced steel corrugated shear walls (GR-SCSWs), which are applied to shear walls with large width-to-height ratio. By revealing the resistant mechanism, the stiffness requirement of the subgrid, the wall–frame interaction, and the overall lateral resistance were studied. First, compared with ordinary steel corrugated shear walls, the lateral resistant behavior of GR-SCSWs and the bending moment of the boundary column were analyzed. Second, the threshold stiffness ratio was defined for the subgrid, and design suggestions were proposed to ensure that the infill panel has high and stable in-plane lateral resistance. Finally, the yielding development and shear force distribution in GR-SCSWs were explored, and an improved plate–frame interaction (PFI) model and formulas predicting the lateral resistance curve of GR-SCSWs were established by numerical analysis and theoretical derivations. It was found that, due to the full out-of-plane restraining effect of the subgrid, the GR-SCSW with optimized subpanels can achieve an in-plane shear yielding mechanism. GR-SCSWs can resist lateral loading with an appropriate yield sequence from the infill panel to the subgrid and then to the boundary frame. The modified PFI model proposed fully considered the interaction between the infill grid-reinforced panel and the boundary frame, while the theoretical formulas agreed with the FEA results and can be used to predict the lateral resistant curve and shear force distribution of GR-SCSWs.
    • Download: (7.610Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lateral Resistant Behavior of Grid-Reinforced Steel Corrugated Shear Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296748
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorChao Dou
    contributor authorYi Ru
    contributor authorZi-Qin Jiang
    contributor authorYan Wang
    date accessioned2024-04-27T22:28:49Z
    date available2024-04-27T22:28:49Z
    date issued2024/06/01
    identifier other10.1061-JSENDH.STENG-12285.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296748
    description abstractThis paper investigated the lateral resistant behavior of grid-reinforced steel corrugated shear walls (GR-SCSWs), which are applied to shear walls with large width-to-height ratio. By revealing the resistant mechanism, the stiffness requirement of the subgrid, the wall–frame interaction, and the overall lateral resistance were studied. First, compared with ordinary steel corrugated shear walls, the lateral resistant behavior of GR-SCSWs and the bending moment of the boundary column were analyzed. Second, the threshold stiffness ratio was defined for the subgrid, and design suggestions were proposed to ensure that the infill panel has high and stable in-plane lateral resistance. Finally, the yielding development and shear force distribution in GR-SCSWs were explored, and an improved plate–frame interaction (PFI) model and formulas predicting the lateral resistance curve of GR-SCSWs were established by numerical analysis and theoretical derivations. It was found that, due to the full out-of-plane restraining effect of the subgrid, the GR-SCSW with optimized subpanels can achieve an in-plane shear yielding mechanism. GR-SCSWs can resist lateral loading with an appropriate yield sequence from the infill panel to the subgrid and then to the boundary frame. The modified PFI model proposed fully considered the interaction between the infill grid-reinforced panel and the boundary frame, while the theoretical formulas agreed with the FEA results and can be used to predict the lateral resistant curve and shear force distribution of GR-SCSWs.
    publisherASCE
    titleLateral Resistant Behavior of Grid-Reinforced Steel Corrugated Shear Walls
    typeJournal Article
    journal volume150
    journal issue6
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-12285
    journal fristpage04024047-1
    journal lastpage04024047-16
    page16
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian