YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Wall Size on the Rotation Capacity of Reinforced Concrete Structural Walls

    Source: Journal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 004::page 04024016-1
    Author:
    İlker Kazaz
    ,
    Mahinur Sertkaya
    ,
    Ahmet Yakut
    DOI: 10.1061/JSENDH.STENG-11880
    Publisher: ASCE
    Abstract: The limiting deformations of RC members used in seismic design and assessment are mainly based on experimental measurements, for which the lack of structural wall tests of large sizes restricts our knowledge on the deformations of large walls. Thus, experimental studies are compensated by numerical analyses to derive performance-based deformation limits for structural walls. In this study, 2,600 cantilever wall models with a wall length of 2–8 m were analyzed in a parametric study using a verified finite element procedure. The variables were selected as wall boundary-element confinement level and longitudinal reinforcement ratio, wall aspect ratio, axial load ratio, and steel and concrete material strengths. While most models exhibit flexural behavior, a sufficient number of wall models were also included to examine the shear-flexure interaction on walls. Complex localized compressive failure of concrete due to shear-compression interaction at the tip of the compression strut acting diagonally on the web or bending-compression action are the typical localized failure modes that are occasionally encountered in the boundary zones of structural walls. Its size dependence has often been disregarded in the literature for structural walls. This study demonstrates that as the wall length increases, the deformation capacity of structural walls decreases significantly due to localized compressive strains that are amplified by the tension shift effect. Similar to the size effect on strength, a size effect rule on the plastic rotation capacity is proposed. The plastic rotation capacity of structural walls was evaluated in the framework of ASCE/SEI 41. It was found that current damage limits are far from being safe for large walls, and even the response is flexural. Refined plastic rotation limits were proposed for the design and assessment of structural walls.
    • Download: (4.909Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Wall Size on the Rotation Capacity of Reinforced Concrete Structural Walls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296737
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorİlker Kazaz
    contributor authorMahinur Sertkaya
    contributor authorAhmet Yakut
    date accessioned2024-04-27T22:28:30Z
    date available2024-04-27T22:28:30Z
    date issued2024/04/01
    identifier other10.1061-JSENDH.STENG-11880.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296737
    description abstractThe limiting deformations of RC members used in seismic design and assessment are mainly based on experimental measurements, for which the lack of structural wall tests of large sizes restricts our knowledge on the deformations of large walls. Thus, experimental studies are compensated by numerical analyses to derive performance-based deformation limits for structural walls. In this study, 2,600 cantilever wall models with a wall length of 2–8 m were analyzed in a parametric study using a verified finite element procedure. The variables were selected as wall boundary-element confinement level and longitudinal reinforcement ratio, wall aspect ratio, axial load ratio, and steel and concrete material strengths. While most models exhibit flexural behavior, a sufficient number of wall models were also included to examine the shear-flexure interaction on walls. Complex localized compressive failure of concrete due to shear-compression interaction at the tip of the compression strut acting diagonally on the web or bending-compression action are the typical localized failure modes that are occasionally encountered in the boundary zones of structural walls. Its size dependence has often been disregarded in the literature for structural walls. This study demonstrates that as the wall length increases, the deformation capacity of structural walls decreases significantly due to localized compressive strains that are amplified by the tension shift effect. Similar to the size effect on strength, a size effect rule on the plastic rotation capacity is proposed. The plastic rotation capacity of structural walls was evaluated in the framework of ASCE/SEI 41. It was found that current damage limits are far from being safe for large walls, and even the response is flexural. Refined plastic rotation limits were proposed for the design and assessment of structural walls.
    publisherASCE
    titleEffect of Wall Size on the Rotation Capacity of Reinforced Concrete Structural Walls
    typeJournal Article
    journal volume150
    journal issue4
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-11880
    journal fristpage04024016-1
    journal lastpage04024016-21
    page21
    treeJournal of Structural Engineering:;2024:;Volume ( 150 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian