YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two-Stage Disturbance Rejection Control Strategy for Airport Refueling Systems Based on Predictive Control

    Source: Journal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 002::page 04024008-1
    Author:
    Peng Liu
    ,
    Jing Gong
    ,
    Bohui Shi
    ,
    Shangfei Song
    DOI: 10.1061/JPSEA2.PSENG-1586
    Publisher: ASCE
    Abstract: Airport refueling systems, composed of parallel pumps and pipe networks, serve as critical infrastructure within the realm of civil aviation. Although the optimal scheduling of centrifugal pumps based on the steady state or quasi-steady state of pipe networks has been extensively investigated, there is a scarcity of studies addressing the dynamic control of pipe networks considering transient characteristics. Due to random disturbances caused by aircraft refueling demand, the adjustment of pump speed needs to be further improved for safety and economics. The hydraulic transient simulation of airport refueling systems was first carried out and the accuracy of the calculation was verified. A two-stage disturbance rejection control strategy based on predictive control was proposed to adjust pump speed reasonably. At the first stage, a generalized predictive control method combined with extended state observer (ESO-GPC) was adopted for disturbance compensation and control stabilization, which was validated to be effective both under slope and general disturbance. A simplified model was employed for online prediction of the inlet pressure fluctuations of pipe networks. At the second stage, pump speed was adjusted based on the deadband judgment, eliminating unnecessary flow fluctuations that may lead to the repetitive start and stop cycles of centrifugal pumps. The proposed two-stage control strategy was implemented in the simulation of the airport refueling system and the results demonstrate that this approach can effectively ensure the safe and stable operation of the system.
    • Download: (4.787Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two-Stage Disturbance Rejection Control Strategy for Airport Refueling Systems Based on Predictive Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296726
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorPeng Liu
    contributor authorJing Gong
    contributor authorBohui Shi
    contributor authorShangfei Song
    date accessioned2024-04-27T22:28:14Z
    date available2024-04-27T22:28:14Z
    date issued2024/05/01
    identifier other10.1061-JPSEA2.PSENG-1586.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296726
    description abstractAirport refueling systems, composed of parallel pumps and pipe networks, serve as critical infrastructure within the realm of civil aviation. Although the optimal scheduling of centrifugal pumps based on the steady state or quasi-steady state of pipe networks has been extensively investigated, there is a scarcity of studies addressing the dynamic control of pipe networks considering transient characteristics. Due to random disturbances caused by aircraft refueling demand, the adjustment of pump speed needs to be further improved for safety and economics. The hydraulic transient simulation of airport refueling systems was first carried out and the accuracy of the calculation was verified. A two-stage disturbance rejection control strategy based on predictive control was proposed to adjust pump speed reasonably. At the first stage, a generalized predictive control method combined with extended state observer (ESO-GPC) was adopted for disturbance compensation and control stabilization, which was validated to be effective both under slope and general disturbance. A simplified model was employed for online prediction of the inlet pressure fluctuations of pipe networks. At the second stage, pump speed was adjusted based on the deadband judgment, eliminating unnecessary flow fluctuations that may lead to the repetitive start and stop cycles of centrifugal pumps. The proposed two-stage control strategy was implemented in the simulation of the airport refueling system and the results demonstrate that this approach can effectively ensure the safe and stable operation of the system.
    publisherASCE
    titleTwo-Stage Disturbance Rejection Control Strategy for Airport Refueling Systems Based on Predictive Control
    typeJournal Article
    journal volume15
    journal issue2
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/JPSEA2.PSENG-1586
    journal fristpage04024008-1
    journal lastpage04024008-12
    page12
    treeJournal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian