YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Leakage Simulation and Prediction for High-Pressure Natural Gas Pipeline in a Confined Space

    Source: Journal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 002::page 04024016-1
    Author:
    Zhiheng Xia
    ,
    Zhao-Dong Xu
    ,
    Hongfang Lu
    ,
    Haoyan Peng
    ,
    Xinyu Liu
    ,
    Yankun Jia
    DOI: 10.1061/JPSEA2.PSENG-1555
    Publisher: ASCE
    Abstract: With economic development and the burgeoning need for energy, numerous underground gas pipelines have been deployed for operation. Buried gas pipelines often suffer failures as a result of adverse factors, including corrosion, uneven subsidence, and damage caused by third parties. To investigate and predict the diffusion behavior following a natural gas pipeline leakage, Fluent software is utilized to develop a numerical model for the leakage and diffusion of high-pressure natural gas within a confined space. This model incorporates the Soave–Redlich–Kwong equation of state, which is widely recognized for its exceptional precision in characterizing the behavior of natural gas under high-pressure conditions. The study focuses on the analysis of leakage and diffusion behavior as well as the examination of how pipeline operating pressure and leakage diameter have an impact on the dispersion of leaked gas. Further, the prediction model for the diffusion distance of the hazardous area is developed, employing the least-square method and finite element calculations. The results show that, during the leakage process, a vortex and velocity region emerge, extending along the confined space. The farther away from the leakage hole above the pipeline, the higher the overall concentration of the gas. Moreover, the horizontal diffusion distance of gas at the bottom of the pipeline is considerably smaller than that above it. However, gas tends to readily accumulate in a high concentration area at the bottom of the pipeline. Elevating the leakage diameter and the operation pressure leads to a significant rise in gas concentration and the horizontal diffusion of the hazardous area. It is worth noting that the leakage diameter has a more pronounced effect on gas diffusion than does the pressure. The prediction model proposed in this study effectively anticipates the horizontal diffusion of the hazardous area within confined spaces.
    • Download: (5.071Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Leakage Simulation and Prediction for High-Pressure Natural Gas Pipeline in a Confined Space

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296719
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorZhiheng Xia
    contributor authorZhao-Dong Xu
    contributor authorHongfang Lu
    contributor authorHaoyan Peng
    contributor authorXinyu Liu
    contributor authorYankun Jia
    date accessioned2024-04-27T22:28:03Z
    date available2024-04-27T22:28:03Z
    date issued2024/05/01
    identifier other10.1061-JPSEA2.PSENG-1555.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296719
    description abstractWith economic development and the burgeoning need for energy, numerous underground gas pipelines have been deployed for operation. Buried gas pipelines often suffer failures as a result of adverse factors, including corrosion, uneven subsidence, and damage caused by third parties. To investigate and predict the diffusion behavior following a natural gas pipeline leakage, Fluent software is utilized to develop a numerical model for the leakage and diffusion of high-pressure natural gas within a confined space. This model incorporates the Soave–Redlich–Kwong equation of state, which is widely recognized for its exceptional precision in characterizing the behavior of natural gas under high-pressure conditions. The study focuses on the analysis of leakage and diffusion behavior as well as the examination of how pipeline operating pressure and leakage diameter have an impact on the dispersion of leaked gas. Further, the prediction model for the diffusion distance of the hazardous area is developed, employing the least-square method and finite element calculations. The results show that, during the leakage process, a vortex and velocity region emerge, extending along the confined space. The farther away from the leakage hole above the pipeline, the higher the overall concentration of the gas. Moreover, the horizontal diffusion distance of gas at the bottom of the pipeline is considerably smaller than that above it. However, gas tends to readily accumulate in a high concentration area at the bottom of the pipeline. Elevating the leakage diameter and the operation pressure leads to a significant rise in gas concentration and the horizontal diffusion of the hazardous area. It is worth noting that the leakage diameter has a more pronounced effect on gas diffusion than does the pressure. The prediction model proposed in this study effectively anticipates the horizontal diffusion of the hazardous area within confined spaces.
    publisherASCE
    titleLeakage Simulation and Prediction for High-Pressure Natural Gas Pipeline in a Confined Space
    typeJournal Article
    journal volume15
    journal issue2
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/JPSEA2.PSENG-1555
    journal fristpage04024016-1
    journal lastpage04024016-14
    page14
    treeJournal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian