YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Pipeline Systems Engineering and Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Backfill Material on the Rerounding of Deflected Corrugated High-Density Polyethylene Drainage Pipes

    Source: Journal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 001::page 04023057-1
    Author:
    Kevin White
    ,
    Shad Sargand
    ,
    Issam Khoury
    DOI: 10.1061/JPSEA2.PSENG-1472
    Publisher: ASCE
    Abstract: Rerounding is a technique for remediating excess deflection in thermoplastic pipe. A pneumatic device vibrates along the vertical axis and pushes against the inside crown and invert to restore the original pipe shape and redistribute the surrounding backfill. A systematic evaluation of the method was justified because rerounding is routinely used by contractors to remediate deflected thermoplastic pipes, and it has not been investigated outside of a few previous reports. Three 900-mm and two 450-mm corrugated high-density polyethylene (HDPE) pipes were installed in various bedding and backfill materials. Test pipes were intentionally installed with substantial deflection (10% or more) and then rerounded. The pipe conditions were measured and monitored by collecting profiles, measuring vertical deflections, and monitoring soil pressure, soil stiffness, backfill characteristics, and pipe corrugation depth before and after rerounding. The data from the deflection, soil stiffness, corrugation, and soil pressure monitoring confirmed the following: (1) during rerounding, soil particles migrated and soil pressure was redistributed; fine material from the crown and springline moved down toward the haunch area, at least in the well-graded aggregate backfill; (2) it is difficult to successfully reduce deflection in corrugated HDPE pipes in well-graded aggregate backfill; (3) installing the pipes with excess deflection proved a significant challenge, as all the pipes required much effort to reach sufficient deflection. It proved necessary to create a device to hold the pipe in a deflected state during backfilling; (4) rerounding successfully reduces deflections for pipes in sand backfill; and (5) test pipes backfilled with Ohio Department of Transportation (ODOT) Type-3 backfill were easy to reround, but a change in environmental conditions and/or dynamic loading may create a change in the stress path leading to excessive deflection and reversal of the effects of rerounding.
    • Download: (1.443Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Backfill Material on the Rerounding of Deflected Corrugated High-Density Polyethylene Drainage Pipes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296696
    Collections
    • Journal of Pipeline Systems Engineering and Practice

    Show full item record

    contributor authorKevin White
    contributor authorShad Sargand
    contributor authorIssam Khoury
    date accessioned2024-04-27T22:27:22Z
    date available2024-04-27T22:27:22Z
    date issued2024/02/01
    identifier other10.1061-JPSEA2.PSENG-1472.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296696
    description abstractRerounding is a technique for remediating excess deflection in thermoplastic pipe. A pneumatic device vibrates along the vertical axis and pushes against the inside crown and invert to restore the original pipe shape and redistribute the surrounding backfill. A systematic evaluation of the method was justified because rerounding is routinely used by contractors to remediate deflected thermoplastic pipes, and it has not been investigated outside of a few previous reports. Three 900-mm and two 450-mm corrugated high-density polyethylene (HDPE) pipes were installed in various bedding and backfill materials. Test pipes were intentionally installed with substantial deflection (10% or more) and then rerounded. The pipe conditions were measured and monitored by collecting profiles, measuring vertical deflections, and monitoring soil pressure, soil stiffness, backfill characteristics, and pipe corrugation depth before and after rerounding. The data from the deflection, soil stiffness, corrugation, and soil pressure monitoring confirmed the following: (1) during rerounding, soil particles migrated and soil pressure was redistributed; fine material from the crown and springline moved down toward the haunch area, at least in the well-graded aggregate backfill; (2) it is difficult to successfully reduce deflection in corrugated HDPE pipes in well-graded aggregate backfill; (3) installing the pipes with excess deflection proved a significant challenge, as all the pipes required much effort to reach sufficient deflection. It proved necessary to create a device to hold the pipe in a deflected state during backfilling; (4) rerounding successfully reduces deflections for pipes in sand backfill; and (5) test pipes backfilled with Ohio Department of Transportation (ODOT) Type-3 backfill were easy to reround, but a change in environmental conditions and/or dynamic loading may create a change in the stress path leading to excessive deflection and reversal of the effects of rerounding.
    publisherASCE
    titleImpact of Backfill Material on the Rerounding of Deflected Corrugated High-Density Polyethylene Drainage Pipes
    typeJournal Article
    journal volume15
    journal issue1
    journal titleJournal of Pipeline Systems Engineering and Practice
    identifier doi10.1061/JPSEA2.PSENG-1472
    journal fristpage04023057-1
    journal lastpage04023057-13
    page13
    treeJournal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian