YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Road Profile Inversion from In-Vehicle Accelerometers

    Source: Journal of Transportation Engineering, Part B: Pavements:;2024:;Volume ( 150 ):;issue: 001::page 04023040-1
    Author:
    Asmus Skar
    ,
    Eyal Levenberg
    DOI: 10.1061/JPEODX.PVENG-1385
    Publisher: ASCE
    Abstract: This study was motivated by the need for a road profile monitoring concept that can provide frequent measurements over large areas across all weather conditions. A profile inversion method was proposed in this context, based on measured in-vehicle accelerations alongside speed and location information. The method combined a quarter-car response model, a proportional-integral-derivative controller, and a nonlinear error minimization algorithm. In general terms, the underlying idea for profile inversion was centred around best-matching measured accelerations with accelerations calculated in a precalibrated quarter-car response model. The new method was first verified with synthetic/manufactured acceleration traces. Next, it was applied to real data obtained from 10 nominally identical electric cars that were driven over highways and urban roads. Inverted road profiles were compared to those measured by a standard laser profilometer. Very good match and reproducibility metrics were obtained, especially for highways, indicating that the new method is potentially useful as a large-scale road profile monitoring concept.
    • Download: (1.355Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Road Profile Inversion from In-Vehicle Accelerometers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296668
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorAsmus Skar
    contributor authorEyal Levenberg
    date accessioned2024-04-27T22:26:42Z
    date available2024-04-27T22:26:42Z
    date issued2024/03/01
    identifier other10.1061-JPEODX.PVENG-1385.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296668
    description abstractThis study was motivated by the need for a road profile monitoring concept that can provide frequent measurements over large areas across all weather conditions. A profile inversion method was proposed in this context, based on measured in-vehicle accelerations alongside speed and location information. The method combined a quarter-car response model, a proportional-integral-derivative controller, and a nonlinear error minimization algorithm. In general terms, the underlying idea for profile inversion was centred around best-matching measured accelerations with accelerations calculated in a precalibrated quarter-car response model. The new method was first verified with synthetic/manufactured acceleration traces. Next, it was applied to real data obtained from 10 nominally identical electric cars that were driven over highways and urban roads. Inverted road profiles were compared to those measured by a standard laser profilometer. Very good match and reproducibility metrics were obtained, especially for highways, indicating that the new method is potentially useful as a large-scale road profile monitoring concept.
    publisherASCE
    titleRoad Profile Inversion from In-Vehicle Accelerometers
    typeJournal Article
    journal volume150
    journal issue1
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.PVENG-1385
    journal fristpage04023040-1
    journal lastpage04023040-14
    page14
    treeJournal of Transportation Engineering, Part B: Pavements:;2024:;Volume ( 150 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian