YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Risk-Based Self-Improving Asset Management Framework for Coastal Protection Structures Using 1+ Inspection Points

    Source: Journal of Performance of Constructed Facilities:;2024:;Volume ( 038 ):;issue: 003::page 04024007-1
    Author:
    Ayman H. El Hakea
    ,
    Mahmoud Sami
    ,
    Abdelhay Badawy
    ,
    Emad Elbeltagi
    ,
    Ossama Hosny
    ,
    Moheb Iskander
    ,
    Soliman Abu-Samra
    DOI: 10.1061/JPCFEV.CFENG-4633
    Publisher: ASCE
    Abstract: Limited research has been directed toward coastal protection infrastructure compared to other types of infrastructure, despite the increasing global population in low-elevated coastal regions and the threats posed by climate change. This paper presents a risk-based asset management framework for coastal protection structures that improves accuracy with each inspection. The framework consists of five components: the Coastal Asset Inventory (CAI), Inspection and Condition Assessment (ICA) module, Backward Markovian Deterioration Model (BMDM), Forward Markovian Deterioration Model (FMDM), and Intervention Policy Engine (IPE). The framework addresses challenges in accurately predicting coastal structure deterioration due to uncertainties in wave loading conditions and the need for frequent inspections. It is applied to rubble-mound breakwaters in Alexandria, Egypt. The BMDM and FMDM models are developed based on inspection data, and the IPE optimizes interventions considering structural condition, risk thresholds, and budget constraints. Results showed that long-term deterioration estimates occur at an accelerated rate with an increase in inspection points, triggering earlier interventions. However, the framework proves reliable even with only two inspection points, allowing asset managing agencies to implement the model based on the structural condition at the year of construction and a minimum of two inspections. The proposed risk-based asset management framework provided a comprehensive approach to managing coastal protection infrastructure, reducing risks to life and property. By accurately predicting deterioration and optimizing intervention decisions, the framework can greatly assist in the effective management and maintenance of coastal assets. This is vital in ensuring the safety of coastal populations facing global climate change and demographic growth. Coastal protection structures are crucial for safeguarding coastal populations in the face of climate change and demographic growth. This research paper introduces a risk-based asset management framework for coastal protection structures, with practical applications for coastal management agencies and practitioners. The framework addresses the challenges of predicting coastal structure deterioration and optimizing intervention decisions. The framework consists of five components: the Coastal Asset Inventory (CAI), Inspection and Condition Assessment (ICA), Backward Markovian Deterioration Model (BMDM), Forward Markovian Deterioration Model (FMDM), and Intervention Policy Engine (IPE). It has been successfully applied to rubble-mound breakwaters in Alexandria, Egypt. The practical implications are significant: The framework enables asset managers to make informed decisions on coastal infrastructure maintenance and interventions, reducing risks to life and property. It provides a comprehensive approach to managing coastal protection infrastructure and ensuring the safety of coastal populations. By accurately predicting deterioration and optimizing interventions, the framework supports effective management and maintenance of coastal assets. Its reliability and flexibility make it a valuable tool for coastal management practitioners, promoting sustainable development and safeguarding coastal areas. With its potential for broader application, this risk-based asset management framework offers practical solutions for coastal protection worldwide.
    • Download: (2.373Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Risk-Based Self-Improving Asset Management Framework for Coastal Protection Structures Using 1+ Inspection Points

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296650
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorAyman H. El Hakea
    contributor authorMahmoud Sami
    contributor authorAbdelhay Badawy
    contributor authorEmad Elbeltagi
    contributor authorOssama Hosny
    contributor authorMoheb Iskander
    contributor authorSoliman Abu-Samra
    date accessioned2024-04-27T22:26:13Z
    date available2024-04-27T22:26:13Z
    date issued2024/06/01
    identifier other10.1061-JPCFEV.CFENG-4633.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296650
    description abstractLimited research has been directed toward coastal protection infrastructure compared to other types of infrastructure, despite the increasing global population in low-elevated coastal regions and the threats posed by climate change. This paper presents a risk-based asset management framework for coastal protection structures that improves accuracy with each inspection. The framework consists of five components: the Coastal Asset Inventory (CAI), Inspection and Condition Assessment (ICA) module, Backward Markovian Deterioration Model (BMDM), Forward Markovian Deterioration Model (FMDM), and Intervention Policy Engine (IPE). The framework addresses challenges in accurately predicting coastal structure deterioration due to uncertainties in wave loading conditions and the need for frequent inspections. It is applied to rubble-mound breakwaters in Alexandria, Egypt. The BMDM and FMDM models are developed based on inspection data, and the IPE optimizes interventions considering structural condition, risk thresholds, and budget constraints. Results showed that long-term deterioration estimates occur at an accelerated rate with an increase in inspection points, triggering earlier interventions. However, the framework proves reliable even with only two inspection points, allowing asset managing agencies to implement the model based on the structural condition at the year of construction and a minimum of two inspections. The proposed risk-based asset management framework provided a comprehensive approach to managing coastal protection infrastructure, reducing risks to life and property. By accurately predicting deterioration and optimizing intervention decisions, the framework can greatly assist in the effective management and maintenance of coastal assets. This is vital in ensuring the safety of coastal populations facing global climate change and demographic growth. Coastal protection structures are crucial for safeguarding coastal populations in the face of climate change and demographic growth. This research paper introduces a risk-based asset management framework for coastal protection structures, with practical applications for coastal management agencies and practitioners. The framework addresses the challenges of predicting coastal structure deterioration and optimizing intervention decisions. The framework consists of five components: the Coastal Asset Inventory (CAI), Inspection and Condition Assessment (ICA), Backward Markovian Deterioration Model (BMDM), Forward Markovian Deterioration Model (FMDM), and Intervention Policy Engine (IPE). It has been successfully applied to rubble-mound breakwaters in Alexandria, Egypt. The practical implications are significant: The framework enables asset managers to make informed decisions on coastal infrastructure maintenance and interventions, reducing risks to life and property. It provides a comprehensive approach to managing coastal protection infrastructure and ensuring the safety of coastal populations. By accurately predicting deterioration and optimizing interventions, the framework supports effective management and maintenance of coastal assets. Its reliability and flexibility make it a valuable tool for coastal management practitioners, promoting sustainable development and safeguarding coastal areas. With its potential for broader application, this risk-based asset management framework offers practical solutions for coastal protection worldwide.
    publisherASCE
    titleRisk-Based Self-Improving Asset Management Framework for Coastal Protection Structures Using 1+ Inspection Points
    typeJournal Article
    journal volume38
    journal issue3
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/JPCFEV.CFENG-4633
    journal fristpage04024007-1
    journal lastpage04024007-17
    page17
    treeJournal of Performance of Constructed Facilities:;2024:;Volume ( 038 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian