YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Retrofitting Techniques for a Four-Story Masonry Building to Resist Blast Loading

    Source: Journal of Performance of Constructed Facilities:;2024:;Volume ( 038 ):;issue: 002::page 04024004-1
    Author:
    Ahmed Gouda
    ,
    Hamed Salem
    ,
    Ahmed Elansary
    DOI: 10.1061/JPCFEV.CFENG-4523
    Publisher: ASCE
    Abstract: Masonry walls are commonly preferred in the construction of low-rise buildings due to their proven efficiency in resisting gravity loads and their relatively low material and labor costs. However, few studies investigating the behavior of retrofitted buildings under blast loading have been found in the literature. This paper describes the first comprehensive study investigating the efficiency of four retrofitting techniques for a low-rise masonry building under blast loading. The investigated retrofitting materials were textile-reinforced mortar (TRM), carbon-fiber-reinforced polymers (CFRPs), glass-fiber-reinforced polymers (GFRPs), and polypropylene bands (PPBs). Compared with regular reinforcing steel, these materials have light weight, high corrosion resistance, and perfect durability properties, in addition to their ease of application. A three-dimensional applied element model (AEM), which accounts for both geometric and material nonlinearities, was developed and validated to analyze an existing four-story masonry building under blast loading. Material nonlinearity was considered by including nonlinear models for masonry, mortar, TRM, CFRPs, and PPBs. Masonry blocks were modeled using brick elements, while the in-between mortar was modeled using spring elements. Validation of the AEM was by modeling masonry walls taken from the literature and comparing their results with counterparts obtained from experiments from the literature. Cracking pattern, displacements, support rotation, and load capacity for the investigated building with and without retrofitting using the four materials were compared. Costs were compared based on market prices. Retrofitting the case study building with TRM, CFRPs, GFRPs, and PPBs reduced maximum support rotation by 39%–98%, 28%–88%, 33%–92%, and 9%–84%, respectively, and increased blast load capacity by 35%–404%, 48%–91%, 83%–135%, and 26%–46%, respectively. The study revealed that retrofitting the investigated building with TRM provided the optimum behavior in terms of cost, crack propagation, and blast load capacity. Masonry walls are frequently used in low-rise buildings due to their efficiency in resisting gravity loads and having low material and labor costs. This study investigated the efficiency of textile-reinforced mortar (TRM), carbon fiber–reinforced polymers (CFRPs), glass fiber–reinforced polymers (GFRPs), and polypropylene bands (PPBs) to improve the resistance of low-rise buildings to blast loading. The adopted retrofitting materials have light weight, high corrosion resistance, and perfect durability properties. A numerical model analyzed an existing four-story masonry building under blast loading. Cracking, displacements, support rotation, and load capacity with and without retrofitting were compared. Costs were compared based on market prices. Retrofitting the studied building with TRM, CFRPs, GFRPs, and PPBs reduced maximum support rotation by 39%–98%, 28%–88%, 33%–92%, and 9%–84%, respectively, and increased blast load capacity by 35%–404%, 48%–91%, 83%–135%, and 26%–46%, respectively. The study findings recommend TRM in retrofitting masonry buildings to achieve the least cost and the fewest cracks in addition to the highest blast load resistance.
    • Download: (3.427Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Retrofitting Techniques for a Four-Story Masonry Building to Resist Blast Loading

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296636
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorAhmed Gouda
    contributor authorHamed Salem
    contributor authorAhmed Elansary
    date accessioned2024-04-27T22:25:52Z
    date available2024-04-27T22:25:52Z
    date issued2024/04/01
    identifier other10.1061-JPCFEV.CFENG-4523.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296636
    description abstractMasonry walls are commonly preferred in the construction of low-rise buildings due to their proven efficiency in resisting gravity loads and their relatively low material and labor costs. However, few studies investigating the behavior of retrofitted buildings under blast loading have been found in the literature. This paper describes the first comprehensive study investigating the efficiency of four retrofitting techniques for a low-rise masonry building under blast loading. The investigated retrofitting materials were textile-reinforced mortar (TRM), carbon-fiber-reinforced polymers (CFRPs), glass-fiber-reinforced polymers (GFRPs), and polypropylene bands (PPBs). Compared with regular reinforcing steel, these materials have light weight, high corrosion resistance, and perfect durability properties, in addition to their ease of application. A three-dimensional applied element model (AEM), which accounts for both geometric and material nonlinearities, was developed and validated to analyze an existing four-story masonry building under blast loading. Material nonlinearity was considered by including nonlinear models for masonry, mortar, TRM, CFRPs, and PPBs. Masonry blocks were modeled using brick elements, while the in-between mortar was modeled using spring elements. Validation of the AEM was by modeling masonry walls taken from the literature and comparing their results with counterparts obtained from experiments from the literature. Cracking pattern, displacements, support rotation, and load capacity for the investigated building with and without retrofitting using the four materials were compared. Costs were compared based on market prices. Retrofitting the case study building with TRM, CFRPs, GFRPs, and PPBs reduced maximum support rotation by 39%–98%, 28%–88%, 33%–92%, and 9%–84%, respectively, and increased blast load capacity by 35%–404%, 48%–91%, 83%–135%, and 26%–46%, respectively. The study revealed that retrofitting the investigated building with TRM provided the optimum behavior in terms of cost, crack propagation, and blast load capacity. Masonry walls are frequently used in low-rise buildings due to their efficiency in resisting gravity loads and having low material and labor costs. This study investigated the efficiency of textile-reinforced mortar (TRM), carbon fiber–reinforced polymers (CFRPs), glass fiber–reinforced polymers (GFRPs), and polypropylene bands (PPBs) to improve the resistance of low-rise buildings to blast loading. The adopted retrofitting materials have light weight, high corrosion resistance, and perfect durability properties. A numerical model analyzed an existing four-story masonry building under blast loading. Cracking, displacements, support rotation, and load capacity with and without retrofitting were compared. Costs were compared based on market prices. Retrofitting the studied building with TRM, CFRPs, GFRPs, and PPBs reduced maximum support rotation by 39%–98%, 28%–88%, 33%–92%, and 9%–84%, respectively, and increased blast load capacity by 35%–404%, 48%–91%, 83%–135%, and 26%–46%, respectively. The study findings recommend TRM in retrofitting masonry buildings to achieve the least cost and the fewest cracks in addition to the highest blast load resistance.
    publisherASCE
    titleAssessment of Retrofitting Techniques for a Four-Story Masonry Building to Resist Blast Loading
    typeJournal Article
    journal volume38
    journal issue2
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/JPCFEV.CFENG-4523
    journal fristpage04024004-1
    journal lastpage04024004-15
    page15
    treeJournal of Performance of Constructed Facilities:;2024:;Volume ( 038 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian