YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deciphering the Fracture Initiation Mechanism in Additive-Manufactured 17-4 Steel

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006::page 04024122-1
    Author:
    Anik Das Anto
    ,
    Surajit Dey
    ,
    Ravi Kiran
    DOI: 10.1061/JMCEE7.MTENG-17445
    Publisher: ASCE
    Abstract: Additive manufacturing (AM) provides exceptional geometrical freedom to the architects and designers and enables the construction of architecturally exposed steel structures. However, the AM structural elements inherently possess microscale defects that can affect their ductility. This study aims to identify the fracture-initiating mechanism in AM 17-4 stainless steel that is popularly used owing to its excellent engineering properties. To this end, axisymmetric cylindrical notched and unnotched tension specimens are manufactured employing direct metal laser sintering from 17-4 stainless steel powder with established processing and build parameters. The test specimens were manufactured using a 90° build orientation with the build plate and a layer thickness of 40 μm. Postprocessing heat treatment was avoided as the study focused on understanding the failure mechanism in as-built AM test specimens. Detailed metallurgical analysis is performed employing scanning electron microscopy (SEM) and electron backscatter diffraction. Subsequently, micro–computed tomography (CT) studies are conducted on the tension specimens before and after mechanical testing. Although the SEM analyses of fracture surfaces are inconclusive, the micro-CT analysis revealed evidence of nucleation of new microvoids, growth of existing voids, and void coalescence in the vicinity of the fracture surface, which is unequivocal evidence for ductile fracture. Furthermore, the larger AM defects were found to play an important role in lowering the ductility in addition to stress concentration, and the fracture was initiated when the AM defects coalesced over a length of around 600 μm. The conclusions of this study emphasize the importance of controlling the maximum size of defects in AM structural elements to improve their performance.
    • Download: (13.06Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deciphering the Fracture Initiation Mechanism in Additive-Manufactured 17-4 Steel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296527
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAnik Das Anto
    contributor authorSurajit Dey
    contributor authorRavi Kiran
    date accessioned2024-04-27T22:22:55Z
    date available2024-04-27T22:22:55Z
    date issued2024/06/01
    identifier other10.1061-JMCEE7.MTENG-17445.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296527
    description abstractAdditive manufacturing (AM) provides exceptional geometrical freedom to the architects and designers and enables the construction of architecturally exposed steel structures. However, the AM structural elements inherently possess microscale defects that can affect their ductility. This study aims to identify the fracture-initiating mechanism in AM 17-4 stainless steel that is popularly used owing to its excellent engineering properties. To this end, axisymmetric cylindrical notched and unnotched tension specimens are manufactured employing direct metal laser sintering from 17-4 stainless steel powder with established processing and build parameters. The test specimens were manufactured using a 90° build orientation with the build plate and a layer thickness of 40 μm. Postprocessing heat treatment was avoided as the study focused on understanding the failure mechanism in as-built AM test specimens. Detailed metallurgical analysis is performed employing scanning electron microscopy (SEM) and electron backscatter diffraction. Subsequently, micro–computed tomography (CT) studies are conducted on the tension specimens before and after mechanical testing. Although the SEM analyses of fracture surfaces are inconclusive, the micro-CT analysis revealed evidence of nucleation of new microvoids, growth of existing voids, and void coalescence in the vicinity of the fracture surface, which is unequivocal evidence for ductile fracture. Furthermore, the larger AM defects were found to play an important role in lowering the ductility in addition to stress concentration, and the fracture was initiated when the AM defects coalesced over a length of around 600 μm. The conclusions of this study emphasize the importance of controlling the maximum size of defects in AM structural elements to improve their performance.
    publisherASCE
    titleDeciphering the Fracture Initiation Mechanism in Additive-Manufactured 17-4 Steel
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17445
    journal fristpage04024122-1
    journal lastpage04024122-17
    page17
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian