YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Understanding the Storage Stability of Polyethylene Modified Binders: A Laboratory Case Study Using Waste Plastics

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 004::page 04024038-1
    Author:
    Venkatsushanth Revelli
    ,
    Sk Faisal Kabir
    ,
    Ayman Ali
    ,
    Yusuf Mehta
    ,
    Ben C. Cox
    DOI: 10.1061/JMCEE7.MTENG-17334
    Publisher: ASCE
    Abstract: The aim of the study is to understand and achieve storage stable, compatible plastic-modified asphalt binders. In view of global plastic accumulation, the potentiality of polymeric waste plastics is evaluated as an asphalt binder modifier; providing an alternate recycling option. However, due to phase separation issues between asphalt and plastic, the usage of waste plastic is preferred through dry mixing in asphalt mixture. In this study, the compatibility of polyethylene-modified asphalt binder was assessed along with appropriate parameters that can explain the actual phase separation occurring during storage stability testing. Two types of plastics including low-density polyethylene (LDPE) and high-density polyethylene (HDPE) were blended with a PG 58-28 neat binder after assessing their melting behavior along with polystyrene (PS) and polyethylene terephthalate (PET). The impacts of polyethylene size (2.36–1.18 mm, 0.6–0.3 mm, less than 0.3 mm), blending time (30, 60, 120, 180 min), hot storage duration (0, 24, 48 h), and compatibilizers (styrene-butadiene-styrene, nanosilica, corn oil, polyphosphoric acid) on the storage stability were assessed. G*/Sinδ was used as an initial measure to assess the separation index (SI) value. The results concluded that polyethylene is observed to be inert to asphalt and phase separation persists irrespective of size and compatibilizer. Nanosilica at a dosage of 0.5% was able to partially compatibilize (SI value improved from 5.4 to 1.87) PE with asphalt. Also, in the need for better parameters to better understand the phase separation, percentage recovery, fluorescence microscopy, and black space analysis were identified as proper tests to detect phase separation.
    • Download: (3.441Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Understanding the Storage Stability of Polyethylene Modified Binders: A Laboratory Case Study Using Waste Plastics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296519
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorVenkatsushanth Revelli
    contributor authorSk Faisal Kabir
    contributor authorAyman Ali
    contributor authorYusuf Mehta
    contributor authorBen C. Cox
    date accessioned2024-04-27T22:22:41Z
    date available2024-04-27T22:22:41Z
    date issued2024/04/01
    identifier other10.1061-JMCEE7.MTENG-17334.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296519
    description abstractThe aim of the study is to understand and achieve storage stable, compatible plastic-modified asphalt binders. In view of global plastic accumulation, the potentiality of polymeric waste plastics is evaluated as an asphalt binder modifier; providing an alternate recycling option. However, due to phase separation issues between asphalt and plastic, the usage of waste plastic is preferred through dry mixing in asphalt mixture. In this study, the compatibility of polyethylene-modified asphalt binder was assessed along with appropriate parameters that can explain the actual phase separation occurring during storage stability testing. Two types of plastics including low-density polyethylene (LDPE) and high-density polyethylene (HDPE) were blended with a PG 58-28 neat binder after assessing their melting behavior along with polystyrene (PS) and polyethylene terephthalate (PET). The impacts of polyethylene size (2.36–1.18 mm, 0.6–0.3 mm, less than 0.3 mm), blending time (30, 60, 120, 180 min), hot storage duration (0, 24, 48 h), and compatibilizers (styrene-butadiene-styrene, nanosilica, corn oil, polyphosphoric acid) on the storage stability were assessed. G*/Sinδ was used as an initial measure to assess the separation index (SI) value. The results concluded that polyethylene is observed to be inert to asphalt and phase separation persists irrespective of size and compatibilizer. Nanosilica at a dosage of 0.5% was able to partially compatibilize (SI value improved from 5.4 to 1.87) PE with asphalt. Also, in the need for better parameters to better understand the phase separation, percentage recovery, fluorescence microscopy, and black space analysis were identified as proper tests to detect phase separation.
    publisherASCE
    titleUnderstanding the Storage Stability of Polyethylene Modified Binders: A Laboratory Case Study Using Waste Plastics
    typeJournal Article
    journal volume36
    journal issue4
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17334
    journal fristpage04024038-1
    journal lastpage04024038-13
    page13
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian