YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigating Fatigue Damage Accumulation of Asphalt Binders Considering Amplitude Sequence and Loading Interaction

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006::page 04024142-1
    Author:
    Chenze Fang
    ,
    Naisheng Guo
    ,
    Hui Li
    ,
    Zhen Leng
    ,
    Jiwang Jiang
    DOI: 10.1061/JMCEE7.MTENG-17329
    Publisher: ASCE
    Abstract: The obvious nonlinear characteristics of fatigue damage accumulation for asphalt binders can be induced by variable amplitude loading. However, the corresponding nonlinear characteristics are difficult to be characterized due to loading interaction and amplitude sequence. This study aims at characterizing the nonlinear fatigue damage accumulation (NFDA) of asphalt binders by establishing an NFDA model. First, the stress-controlled time sweep tests with variable oscillation amplitude were conducted under the two loading modes of the high-low stress amplitude (σhigh-σlow) and low-high stress amplitude (σlow-σhigh). Then, the damage variable of asphalt binders was proposed using a crack length model, and the effects of loading interaction and amplitude sequence on the corresponding NFDA were analyzed. Furthermore, an NFDA model for asphalt binder considering amplitude sequence and loading interaction was developed based on one continuum damage mechanics model. Finally, the cumulative life fractions of asphalt binders were analyzed, and the established NFDA model was used to determine the optimum first life fraction which maximizes the cumulative life fractions. The results showed that the defined fatigue damage of asphalt binders shows a two-stage evolution trend. The NFDA of asphalt binders is affected by both loading interaction and amplitude sequence, which can be determined by the established NFDA model with reasonable accuracy. The σlow-σhigh loading mode can delay the accumulation process of fatigue damage and extend the fatigue life of asphalt binders leading to the cumulative life fractions greater than one, while the σhigh-σlow mode is the opposite. The optimum first life fractions of the tested styrene-butadiene-styrene-modified and virgin asphalt binders are 0.45 and 0.56, respectively.
    • Download: (2.526Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigating Fatigue Damage Accumulation of Asphalt Binders Considering Amplitude Sequence and Loading Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296518
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorChenze Fang
    contributor authorNaisheng Guo
    contributor authorHui Li
    contributor authorZhen Leng
    contributor authorJiwang Jiang
    date accessioned2024-04-27T22:22:39Z
    date available2024-04-27T22:22:39Z
    date issued2024/06/01
    identifier other10.1061-JMCEE7.MTENG-17329.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296518
    description abstractThe obvious nonlinear characteristics of fatigue damage accumulation for asphalt binders can be induced by variable amplitude loading. However, the corresponding nonlinear characteristics are difficult to be characterized due to loading interaction and amplitude sequence. This study aims at characterizing the nonlinear fatigue damage accumulation (NFDA) of asphalt binders by establishing an NFDA model. First, the stress-controlled time sweep tests with variable oscillation amplitude were conducted under the two loading modes of the high-low stress amplitude (σhigh-σlow) and low-high stress amplitude (σlow-σhigh). Then, the damage variable of asphalt binders was proposed using a crack length model, and the effects of loading interaction and amplitude sequence on the corresponding NFDA were analyzed. Furthermore, an NFDA model for asphalt binder considering amplitude sequence and loading interaction was developed based on one continuum damage mechanics model. Finally, the cumulative life fractions of asphalt binders were analyzed, and the established NFDA model was used to determine the optimum first life fraction which maximizes the cumulative life fractions. The results showed that the defined fatigue damage of asphalt binders shows a two-stage evolution trend. The NFDA of asphalt binders is affected by both loading interaction and amplitude sequence, which can be determined by the established NFDA model with reasonable accuracy. The σlow-σhigh loading mode can delay the accumulation process of fatigue damage and extend the fatigue life of asphalt binders leading to the cumulative life fractions greater than one, while the σhigh-σlow mode is the opposite. The optimum first life fractions of the tested styrene-butadiene-styrene-modified and virgin asphalt binders are 0.45 and 0.56, respectively.
    publisherASCE
    titleInvestigating Fatigue Damage Accumulation of Asphalt Binders Considering Amplitude Sequence and Loading Interaction
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17329
    journal fristpage04024142-1
    journal lastpage04024142-11
    page11
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian