YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Corrosion Resistance of Magnesium Ammonium Phosphate Cement-Based Coatings Modified by Calcium Sulfoaluminate Cement on Carbon Steel in a Saline Medium

    Source: Journal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006::page 04024146-1
    Author:
    Liangwei Zhang
    ,
    Qing Wu
    ,
    Hongli Ma
    ,
    Ning Yang
    ,
    Shiliang Ma
    ,
    Muhammad Akbar
    DOI: 10.1061/JMCEE7.MTENG-17142
    Publisher: ASCE
    Abstract: Calcium sulfoaluminate (CSA) cement was used as an internal admixture to replace some of the magnesium oxide (MgO) in magnesium ammonium phosphate cement (MAPC) coatings. This experiment resulted in improved corrosion resistance and production cost savings for MAPC coatings on carbon steel surfaces. The corrosion resistance of coated carbon steel with different CSA doping concentrations was evaluated by electrochemical methods including Tafel polarization curves and electrochemical impedance spectroscopy (EIS). At the same time, 7-day flexural and compressive tests, Low-field nuclear magnetic resonance spectroscopy (NMR) test, X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric and differential thermogravimetric techniques (TG-DTG) were performed on the modified coatings. Neutral salt spray tests confirmed the improved corrosion resistance of the coated carbon steel. Based on the results of the study, the best ratio of CSA-modified MAPC coatings was finalized. The addition of CSA improved the flexural and compressive strength of MAPC. At later stages of immersion, there was an increase in the polarization resistance value, and a significant increase in the anodic slope of the polarization curve. Furthermore, the overall low-frequency impedance value, coatings resistance, and charge transfer resistance all experienced a substantial increase. The microstructural study revealed that Ca4Al6O12(SO4) gradually hydrated during immersion to produce amorphous hydrated calcium sulfoaluminate gel, significantly improving the anticorrosion performance of the coated carbon steel. After the coated carbon steel were exposed to a neutral salt spray environment for 1,440 h, there was no bulging or flaking of the coatings surface, and no rusting of the carbon steel surface. The modified coatings effectively served as a protective layer.
    • Download: (6.287Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Corrosion Resistance of Magnesium Ammonium Phosphate Cement-Based Coatings Modified by Calcium Sulfoaluminate Cement on Carbon Steel in a Saline Medium

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296493
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorLiangwei Zhang
    contributor authorQing Wu
    contributor authorHongli Ma
    contributor authorNing Yang
    contributor authorShiliang Ma
    contributor authorMuhammad Akbar
    date accessioned2024-04-27T22:21:57Z
    date available2024-04-27T22:21:57Z
    date issued2024/06/01
    identifier other10.1061-JMCEE7.MTENG-17142.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296493
    description abstractCalcium sulfoaluminate (CSA) cement was used as an internal admixture to replace some of the magnesium oxide (MgO) in magnesium ammonium phosphate cement (MAPC) coatings. This experiment resulted in improved corrosion resistance and production cost savings for MAPC coatings on carbon steel surfaces. The corrosion resistance of coated carbon steel with different CSA doping concentrations was evaluated by electrochemical methods including Tafel polarization curves and electrochemical impedance spectroscopy (EIS). At the same time, 7-day flexural and compressive tests, Low-field nuclear magnetic resonance spectroscopy (NMR) test, X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric and differential thermogravimetric techniques (TG-DTG) were performed on the modified coatings. Neutral salt spray tests confirmed the improved corrosion resistance of the coated carbon steel. Based on the results of the study, the best ratio of CSA-modified MAPC coatings was finalized. The addition of CSA improved the flexural and compressive strength of MAPC. At later stages of immersion, there was an increase in the polarization resistance value, and a significant increase in the anodic slope of the polarization curve. Furthermore, the overall low-frequency impedance value, coatings resistance, and charge transfer resistance all experienced a substantial increase. The microstructural study revealed that Ca4Al6O12(SO4) gradually hydrated during immersion to produce amorphous hydrated calcium sulfoaluminate gel, significantly improving the anticorrosion performance of the coated carbon steel. After the coated carbon steel were exposed to a neutral salt spray environment for 1,440 h, there was no bulging or flaking of the coatings surface, and no rusting of the carbon steel surface. The modified coatings effectively served as a protective layer.
    publisherASCE
    titleCorrosion Resistance of Magnesium Ammonium Phosphate Cement-Based Coatings Modified by Calcium Sulfoaluminate Cement on Carbon Steel in a Saline Medium
    typeJournal Article
    journal volume36
    journal issue6
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-17142
    journal fristpage04024146-1
    journal lastpage04024146-15
    page15
    treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian