YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Mechanical Model and Solution for Dynamic Response of Geosynthetic-Reinforced Pile-Supported Embankment under Traveling Loads

    Source: International Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 001::page 04023260-1
    Author:
    Ru-Yi Hou
    ,
    Jun-Jie Zheng
    ,
    Hao Fang
    ,
    Wen-Yu Yang
    DOI: 10.1061/IJGNAI.GMENG-8755
    Publisher: ASCE
    Abstract: To evaluate the mechanical behavior and the load transfer mechanisms of a geosynthetic-reinforced pile-supported (GRPS) embankment under traffic load, an analytical model is developed based on elastodynamic theory, and its solution is derived rigorously. Since the present model is continuum based, the displacement and stress distributions in the embankment can be obtained analytically. Additionally, the present model takes the anisotropic property of the reinforced layer into consideration. The governing equations of the model are solved by introducing Fourier expansions of the field variables and making use of the theory of differential equations. With the boundary and interface conditions, the solution of the system is determined. The influences of some critical parameters are investigated. Here we show the load velocity has a significant influence on the response of the system, especially when it approaches the critical point. The present results suggest that the maximum efficiency of a single pile Max{EPi} at v = 100 m/s is almost 2 times higher than its value at v = 1 m/s. Some other parameters, such as pile cap spacing, embankment height, and the stiffness ratio between subsoil and piles, also affect the distributions of EPi, while the total pile efficiency EP only depends on the supporting properties. Some practical suggestions are also presented based on the parametric studies.
    • Download: (1.724Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Mechanical Model and Solution for Dynamic Response of Geosynthetic-Reinforced Pile-Supported Embankment under Traveling Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296458
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorRu-Yi Hou
    contributor authorJun-Jie Zheng
    contributor authorHao Fang
    contributor authorWen-Yu Yang
    date accessioned2024-04-27T22:20:55Z
    date available2024-04-27T22:20:55Z
    date issued2024/01/01
    identifier other10.1061-IJGNAI.GMENG-8755.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296458
    description abstractTo evaluate the mechanical behavior and the load transfer mechanisms of a geosynthetic-reinforced pile-supported (GRPS) embankment under traffic load, an analytical model is developed based on elastodynamic theory, and its solution is derived rigorously. Since the present model is continuum based, the displacement and stress distributions in the embankment can be obtained analytically. Additionally, the present model takes the anisotropic property of the reinforced layer into consideration. The governing equations of the model are solved by introducing Fourier expansions of the field variables and making use of the theory of differential equations. With the boundary and interface conditions, the solution of the system is determined. The influences of some critical parameters are investigated. Here we show the load velocity has a significant influence on the response of the system, especially when it approaches the critical point. The present results suggest that the maximum efficiency of a single pile Max{EPi} at v = 100 m/s is almost 2 times higher than its value at v = 1 m/s. Some other parameters, such as pile cap spacing, embankment height, and the stiffness ratio between subsoil and piles, also affect the distributions of EPi, while the total pile efficiency EP only depends on the supporting properties. Some practical suggestions are also presented based on the parametric studies.
    publisherASCE
    titleA Mechanical Model and Solution for Dynamic Response of Geosynthetic-Reinforced Pile-Supported Embankment under Traveling Loads
    typeJournal Article
    journal volume24
    journal issue1
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8755
    journal fristpage04023260-1
    journal lastpage04023260-13
    page13
    treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian