YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiedge Graph Convolutional Network for House Price Prediction

    Source: Journal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 011::page 04023112-1
    Author:
    Fatemeh Mostofi
    ,
    Vedat Toğan
    ,
    Hasan Basri Başağa
    ,
    Ahmet Çıtıpıtıoğlu
    ,
    Onur Behzat Tokdemir
    DOI: 10.1061/JCEMD4.COENG-13559
    Publisher: ASCE
    Abstract: Accurate house price prediction allows construction investors to make informed decisions about the housing market and understand the growth opportunities for development and the risks and rewards of different construction projects. Machine learning (ML) models have been utilized as house price predictors, reducing decision-making costs, and increasing reliability. To further improve the reliability of the existing predictors, this study develops a hybrid multiedge graph convolutional network (GCN) that considers the various relationships between house price records. The developed hybrid multiedge GCN receives richer input from the multidependency information and thus provides a more reliable prediction that accounts for price changes based on the neighborhood, building age, and number of bedrooms. Compared to other ML approaches, the developed multiedge GCN house price predictor displayed good prediction accuracy while providing valuable insights into the factors that affect the house price, such as the desirability of different neighborhoods and building age. In the context of construction management and property valuation, the multiedge GCN model introduces an enhanced level of reliability for house price prediction. It stands out with its improved interpretability, rooted in its ability to maintain the inherent structure of the house price data set. This added transparency provides professionals with a more profound understanding and trust in prediction outcomes. By encompassing the richer content of the house price data set that includes the multidependency information, the model presents a comprehensive view of house price data sets, facilitating a more accurate and thorough understanding of housing market patterns. As a result, the GCN model matches the accuracy of other ML models while providing greater interpretability and transparency. This model’s capabilities are expected to arm investors, contractors, and policymakers with valuable insights, aiding informed decision-making. It is also envisaged as a beneficial tool for construction project owners and contractors in refining budgets and informed investment decisions. The synthesis of transparency, representativeness, and accuracy makes this model a dependable tool for construction managers to make informed decisions, ultimately enhancing their operational efficacy.
    • Download: (2.332Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiedge Graph Convolutional Network for House Price Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296433
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorFatemeh Mostofi
    contributor authorVedat Toğan
    contributor authorHasan Basri Başağa
    contributor authorAhmet Çıtıpıtıoğlu
    contributor authorOnur Behzat Tokdemir
    date accessioned2024-04-27T21:00:23Z
    date available2024-04-27T21:00:23Z
    date issued2023/11/01
    identifier other10.1061-JCEMD4.COENG-13559.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296433
    description abstractAccurate house price prediction allows construction investors to make informed decisions about the housing market and understand the growth opportunities for development and the risks and rewards of different construction projects. Machine learning (ML) models have been utilized as house price predictors, reducing decision-making costs, and increasing reliability. To further improve the reliability of the existing predictors, this study develops a hybrid multiedge graph convolutional network (GCN) that considers the various relationships between house price records. The developed hybrid multiedge GCN receives richer input from the multidependency information and thus provides a more reliable prediction that accounts for price changes based on the neighborhood, building age, and number of bedrooms. Compared to other ML approaches, the developed multiedge GCN house price predictor displayed good prediction accuracy while providing valuable insights into the factors that affect the house price, such as the desirability of different neighborhoods and building age. In the context of construction management and property valuation, the multiedge GCN model introduces an enhanced level of reliability for house price prediction. It stands out with its improved interpretability, rooted in its ability to maintain the inherent structure of the house price data set. This added transparency provides professionals with a more profound understanding and trust in prediction outcomes. By encompassing the richer content of the house price data set that includes the multidependency information, the model presents a comprehensive view of house price data sets, facilitating a more accurate and thorough understanding of housing market patterns. As a result, the GCN model matches the accuracy of other ML models while providing greater interpretability and transparency. This model’s capabilities are expected to arm investors, contractors, and policymakers with valuable insights, aiding informed decision-making. It is also envisaged as a beneficial tool for construction project owners and contractors in refining budgets and informed investment decisions. The synthesis of transparency, representativeness, and accuracy makes this model a dependable tool for construction managers to make informed decisions, ultimately enhancing their operational efficacy.
    publisherASCE
    titleMultiedge Graph Convolutional Network for House Price Prediction
    typeJournal Article
    journal volume149
    journal issue11
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-13559
    journal fristpage04023112-1
    journal lastpage04023112-15
    page15
    treeJournal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian