YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Driven Recommendation System for Construction Safety Risk Assessment

    Source: Journal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 012::page 04023139-1
    Author:
    Fatemeh Mostofi
    ,
    Vedat Toğan
    DOI: 10.1061/JCEMD4.COENG-13437
    Publisher: ASCE
    Abstract: Subjectivity and uncertainty of risk assessment (RA) procedures can be improved by replacing guesswork with data-driven approaches such as machine learning (ML). Although a plethora of ML prediction techniques have been introduced to improve the reliability of RA procedures, the utilization of ML-based recommendation systems that can leverage data from multiple aspects has remained unexplored. In this study, a novel RA recommendation system (RARS) was developed to achieve more reliable, objective, and inclusive safety decisions that can prioritize hazard items and formulate related risky scenarios. To this end, a semisupervised graph representation learning framework, node2vec, was utilized to receive semantic and dependency information from safety records to recommend the components of potential accident scenarios (hazards, hazardous cases, dangerous activities, and risky behaviors) based on the given decision objective. The RARS’s ability to provide flexible and user-oriented safety recommendations was explored on a real-life construction accident data set. This allows construction safety practitioners to dynamically evaluate possible risky scenarios with details regarding different influential risk factors and accordingly devise more reliable site safety strategies and relevant policies. The proposed RARS, through its adoption of the graph representation learning-based recommendation model, has the potential to advance hazard identification and risky scenario formulation during the risk analysis and evaluation stages for three reasons: first, a relation-aware representation data set is structured while assigning each hazard item to the project, related safety features, and different construction occupations; second, it allows flexible configuration of the system input based on different decision objectives by the construction professionals; and third, it provides data-driven recommendations by learning the relationship between the characteristics of different safety data collected across various projects while considering the project similarities in terms of the shared safety attributes. The proposed RARS can identify patterns and relationships in construction safety data sets to generate suggestions and recommendations, even in the absence of explicit labels or outcomes. RARS can suggest relevant hazards, hazardous cases, dangerous activities, and risky behavior items, considering the safety features shared among different projects and construction occupations. This facilitates its constant utilization during the procedure of formulating different safety scenarios that are often performed based on experience-driven guess works, while there may be incomplete or missing data, which is a common occurrence in RA procedures.
    • Download: (2.848Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Driven Recommendation System for Construction Safety Risk Assessment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296429
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorFatemeh Mostofi
    contributor authorVedat Toğan
    date accessioned2024-04-27T21:00:16Z
    date available2024-04-27T21:00:16Z
    date issued2023/12/01
    identifier other10.1061-JCEMD4.COENG-13437.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296429
    description abstractSubjectivity and uncertainty of risk assessment (RA) procedures can be improved by replacing guesswork with data-driven approaches such as machine learning (ML). Although a plethora of ML prediction techniques have been introduced to improve the reliability of RA procedures, the utilization of ML-based recommendation systems that can leverage data from multiple aspects has remained unexplored. In this study, a novel RA recommendation system (RARS) was developed to achieve more reliable, objective, and inclusive safety decisions that can prioritize hazard items and formulate related risky scenarios. To this end, a semisupervised graph representation learning framework, node2vec, was utilized to receive semantic and dependency information from safety records to recommend the components of potential accident scenarios (hazards, hazardous cases, dangerous activities, and risky behaviors) based on the given decision objective. The RARS’s ability to provide flexible and user-oriented safety recommendations was explored on a real-life construction accident data set. This allows construction safety practitioners to dynamically evaluate possible risky scenarios with details regarding different influential risk factors and accordingly devise more reliable site safety strategies and relevant policies. The proposed RARS, through its adoption of the graph representation learning-based recommendation model, has the potential to advance hazard identification and risky scenario formulation during the risk analysis and evaluation stages for three reasons: first, a relation-aware representation data set is structured while assigning each hazard item to the project, related safety features, and different construction occupations; second, it allows flexible configuration of the system input based on different decision objectives by the construction professionals; and third, it provides data-driven recommendations by learning the relationship between the characteristics of different safety data collected across various projects while considering the project similarities in terms of the shared safety attributes. The proposed RARS can identify patterns and relationships in construction safety data sets to generate suggestions and recommendations, even in the absence of explicit labels or outcomes. RARS can suggest relevant hazards, hazardous cases, dangerous activities, and risky behavior items, considering the safety features shared among different projects and construction occupations. This facilitates its constant utilization during the procedure of formulating different safety scenarios that are often performed based on experience-driven guess works, while there may be incomplete or missing data, which is a common occurrence in RA procedures.
    publisherASCE
    titleA Data-Driven Recommendation System for Construction Safety Risk Assessment
    typeJournal Article
    journal volume149
    journal issue12
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/JCEMD4.COENG-13437
    journal fristpage04023139-1
    journal lastpage04023139-14
    page14
    treeJournal of Construction Engineering and Management:;2023:;Volume ( 149 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian