YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unified Compressive Strength and Strain Ductility Models for Fully and Partially FRP-Confined Circular, Square, and Rectangular Concrete Columns

    Source: Journal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 006::page 04023053-1
    Author:
    Javad Shayanfar
    ,
    Joaquim A. O. Barros
    ,
    Mohammadmahdi Abedi
    ,
    Mohammadali Rezazadeh
    DOI: 10.1061/JCCOF2.CCENG-4336
    Publisher: ASCE
    Abstract: Determination of fiber-reinforced polymer (FRP) confinement-induced improvements in the mechanical properties of concrete columns under compression is a current concern, particularly if partial confinement applied on a noncircular cross-sectional shape is to be considered. Although several design-oriented predictive formulations have been proposed for the calculation of axial strength and axial strain ductility of FRP-confined concrete, their applications are, in general, limited to a specific cross-sectional shape (circular, square, or rectangular cross section) and a certain confinement arrangement (fully or partially confining system). Accordingly, the aim in this study is to establish new unified strength and ductility models for concrete columns of circular or noncircular cross sections with fully or partially confining FRP systems. To achieve the highest level of predictive performance through a nonlinear regression technique, two datasets, consisting of 2,117 test data of peak strength and 2,050 test data of strain ductility, available in the literature, were collected. The dominance degrees of size effect, sectional noncircularity (corner radius ratio), cross-sectional aspect ratio, and confinement configuration type on confinement effectiveness were evaluated and reflected in the development of these regression-based models. Through predictions of test data compiled in the datasets and a comparison with the performances of available predictive models, the proposed unified formulations demonstrated a high level of reliability and were found to be proper for design purposes.
    • Download: (1.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unified Compressive Strength and Strain Ductility Models for Fully and Partially FRP-Confined Circular, Square, and Rectangular Concrete Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296417
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJavad Shayanfar
    contributor authorJoaquim A. O. Barros
    contributor authorMohammadmahdi Abedi
    contributor authorMohammadali Rezazadeh
    date accessioned2024-04-27T20:59:57Z
    date available2024-04-27T20:59:57Z
    date issued2023/12/01
    identifier other10.1061-JCCOF2.CCENG-4336.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296417
    description abstractDetermination of fiber-reinforced polymer (FRP) confinement-induced improvements in the mechanical properties of concrete columns under compression is a current concern, particularly if partial confinement applied on a noncircular cross-sectional shape is to be considered. Although several design-oriented predictive formulations have been proposed for the calculation of axial strength and axial strain ductility of FRP-confined concrete, their applications are, in general, limited to a specific cross-sectional shape (circular, square, or rectangular cross section) and a certain confinement arrangement (fully or partially confining system). Accordingly, the aim in this study is to establish new unified strength and ductility models for concrete columns of circular or noncircular cross sections with fully or partially confining FRP systems. To achieve the highest level of predictive performance through a nonlinear regression technique, two datasets, consisting of 2,117 test data of peak strength and 2,050 test data of strain ductility, available in the literature, were collected. The dominance degrees of size effect, sectional noncircularity (corner radius ratio), cross-sectional aspect ratio, and confinement configuration type on confinement effectiveness were evaluated and reflected in the development of these regression-based models. Through predictions of test data compiled in the datasets and a comparison with the performances of available predictive models, the proposed unified formulations demonstrated a high level of reliability and were found to be proper for design purposes.
    publisherASCE
    titleUnified Compressive Strength and Strain Ductility Models for Fully and Partially FRP-Confined Circular, Square, and Rectangular Concrete Columns
    typeJournal Article
    journal volume27
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/JCCOF2.CCENG-4336
    journal fristpage04023053-1
    journal lastpage04023053-20
    page20
    treeJournal of Composites for Construction:;2023:;Volume ( 027 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian