YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Modeling for Strength Prediction in Autoclaved Aerated Concrete Blocks Manufactured with Construction and Demolition Waste Utilization

    Source: Practice Periodical on Structural Design and Construction:;2023:;Volume ( 028 ):;issue: 004::page 04023048-1
    Author:
    Pradyut Anand
    ,
    Anand Kumar Sinha
    ,
    Puja Rajhans
    DOI: 10.1061/PPSCFX.SCENG-1330
    Publisher: ASCE
    Abstract: This study presents a novel investigation and comparison of the mechanical properties, specifically compressive strength (CS) and flexural strength (FS), of autoclaved aerated concrete (AAC) blocks using machine learning (ML) models: linear regression (LR), artificial neural network (ANN), and Gaussian process regression (GPR). The novelty lies in the utilization of ML techniques to predict the mechanical strength of AAC blocks, which have been prepared through a unique combination of materials including flyash (FA), construction and demolition waste (CDW), lime (L), cement (OPC 53), gypsum powder (GP), alkaline solution (AS), and free water (FW). Notably, various proportions of CDW are substituted for FA, and AS is employed as a substitute for aluminum powder (AP). Moreover, the curing process is innovatively conducted in an accelerated curing tank (ACT), deviating from conventional autoclaves. The experimental evaluation of CS and FS serves as the foundation for the development of the ML models, employing days strength, FA, CDW, L, OPC 53, GP, AS, and FW as input parameters. The performance evaluation metrics, including mean square error (MSE), root mean square error (RMSE), and coefficient of determination (R2), demonstrate the superiority of the GPR model in predicting CS and FS. To augment the comprehensive understanding of AAC block performance, additional experimental tests are conducted to analyze block density (BD), water absorption (WA), and drying shrinkage (DS) of AAC specimens. Furthermore, the study encompasses an optimization process to derive an optimal AAC formulation by considering the diverse range of data sets, primarily focusing on maximizing CDW content, CS, and FS, while minimizing FA content and BD. Overall, this research contributes novel insights by showcasing the proposed ML models’ applicability for CS and FS prediction in CDW-based AAC blocks. The experimental investigations conducted on the AAC specimens enhance the current understanding of material performance, further emphasizing the originality and significance of this study.
    • Download: (2.593Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Modeling for Strength Prediction in Autoclaved Aerated Concrete Blocks Manufactured with Construction and Demolition Waste Utilization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296370
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorPradyut Anand
    contributor authorAnand Kumar Sinha
    contributor authorPuja Rajhans
    date accessioned2024-04-27T20:58:36Z
    date available2024-04-27T20:58:36Z
    date issued2023/11/01
    identifier other10.1061-PPSCFX.SCENG-1330.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296370
    description abstractThis study presents a novel investigation and comparison of the mechanical properties, specifically compressive strength (CS) and flexural strength (FS), of autoclaved aerated concrete (AAC) blocks using machine learning (ML) models: linear regression (LR), artificial neural network (ANN), and Gaussian process regression (GPR). The novelty lies in the utilization of ML techniques to predict the mechanical strength of AAC blocks, which have been prepared through a unique combination of materials including flyash (FA), construction and demolition waste (CDW), lime (L), cement (OPC 53), gypsum powder (GP), alkaline solution (AS), and free water (FW). Notably, various proportions of CDW are substituted for FA, and AS is employed as a substitute for aluminum powder (AP). Moreover, the curing process is innovatively conducted in an accelerated curing tank (ACT), deviating from conventional autoclaves. The experimental evaluation of CS and FS serves as the foundation for the development of the ML models, employing days strength, FA, CDW, L, OPC 53, GP, AS, and FW as input parameters. The performance evaluation metrics, including mean square error (MSE), root mean square error (RMSE), and coefficient of determination (R2), demonstrate the superiority of the GPR model in predicting CS and FS. To augment the comprehensive understanding of AAC block performance, additional experimental tests are conducted to analyze block density (BD), water absorption (WA), and drying shrinkage (DS) of AAC specimens. Furthermore, the study encompasses an optimization process to derive an optimal AAC formulation by considering the diverse range of data sets, primarily focusing on maximizing CDW content, CS, and FS, while minimizing FA content and BD. Overall, this research contributes novel insights by showcasing the proposed ML models’ applicability for CS and FS prediction in CDW-based AAC blocks. The experimental investigations conducted on the AAC specimens enhance the current understanding of material performance, further emphasizing the originality and significance of this study.
    publisherASCE
    titleStatistical Modeling for Strength Prediction in Autoclaved Aerated Concrete Blocks Manufactured with Construction and Demolition Waste Utilization
    typeJournal Article
    journal volume28
    journal issue4
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/PPSCFX.SCENG-1330
    journal fristpage04023048-1
    journal lastpage04023048-19
    page19
    treePractice Periodical on Structural Design and Construction:;2023:;Volume ( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian