YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Design and Construction Practice
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Applicability of Different Decision-Making Methodologies for Selecting the Optimum Gravity System for a Medical Facility: A Case Study

    Source: Practice Periodical on Structural Design and Construction:;2023:;Volume ( 028 ):;issue: 003::page 04023033-1
    Author:
    Abby Severyn
    ,
    Simon W. Miller
    ,
    Ryan L. Solnosky
    DOI: 10.1061/PPSCFX.SCENG-1255
    Publisher: ASCE
    Abstract: Structural engineers in the early stages of design will consider multiple system configurations, compositions, and materials, including multiple configurations within a single material, in an effort to select the best solution. When tasked to narrow down these options, engineers rely on a variety of skills, heuristics, and techniques, as well as their own expert judgement. Although there is no correct or incorrect technique, different methods could lead to different systems ultimately being selected depending on factors such as designer preference and experience with structural materials, criteria used, outside influences, design performance, and so on. For medical facilities that require higher performing solutions coupled with robust and often conflicting requirements across multiple discipline boundaries, objective decision making becomes more difficult while not overinfluencing biases in the decision process. In talking cues from engineering design, multicriteria decision-making methodologies (MCDMMs) could be a viable route for medical facility system selection. Such applications have been applied to the building industry but have not been heavily studied in the structural domain. This body of work highlights the effectiveness, usage, and applicability of MCDMM strategies for selecting structural systems given conflicting multidisciplinary criteria. MCDMMs have differing strengths and weaknesses (e.g., compensatory, voting, and rank ordering) that affect a rational decision maker’s ultimate choice, which have not been explored in depth. This study compares a set of different designs across well-established multidisciplinary criteria using three powerful methodologies: analytic hierarchy process (AHP), choosing by advantages (CBA), and Pugh matrix (PM). The project was a real built medical facility where this investigation was conducted as part of a research component to a capstone design course. The resulting MCDMM outcomes show that both AHP and PM rankings are identical for the best and second-best alternatives. CBA had slightly different results yet were very comparable. Similar results are present for the lowest ranking systems; they worse systems were identically ranked with AHP and PM.
    • Download: (2.409Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Applicability of Different Decision-Making Methodologies for Selecting the Optimum Gravity System for a Medical Facility: A Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296351
    Collections
    • Journal of Structural Design and Construction Practice

    Show full item record

    contributor authorAbby Severyn
    contributor authorSimon W. Miller
    contributor authorRyan L. Solnosky
    date accessioned2024-04-27T20:58:06Z
    date available2024-04-27T20:58:06Z
    date issued2023/08/01
    identifier other10.1061-PPSCFX.SCENG-1255.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296351
    description abstractStructural engineers in the early stages of design will consider multiple system configurations, compositions, and materials, including multiple configurations within a single material, in an effort to select the best solution. When tasked to narrow down these options, engineers rely on a variety of skills, heuristics, and techniques, as well as their own expert judgement. Although there is no correct or incorrect technique, different methods could lead to different systems ultimately being selected depending on factors such as designer preference and experience with structural materials, criteria used, outside influences, design performance, and so on. For medical facilities that require higher performing solutions coupled with robust and often conflicting requirements across multiple discipline boundaries, objective decision making becomes more difficult while not overinfluencing biases in the decision process. In talking cues from engineering design, multicriteria decision-making methodologies (MCDMMs) could be a viable route for medical facility system selection. Such applications have been applied to the building industry but have not been heavily studied in the structural domain. This body of work highlights the effectiveness, usage, and applicability of MCDMM strategies for selecting structural systems given conflicting multidisciplinary criteria. MCDMMs have differing strengths and weaknesses (e.g., compensatory, voting, and rank ordering) that affect a rational decision maker’s ultimate choice, which have not been explored in depth. This study compares a set of different designs across well-established multidisciplinary criteria using three powerful methodologies: analytic hierarchy process (AHP), choosing by advantages (CBA), and Pugh matrix (PM). The project was a real built medical facility where this investigation was conducted as part of a research component to a capstone design course. The resulting MCDMM outcomes show that both AHP and PM rankings are identical for the best and second-best alternatives. CBA had slightly different results yet were very comparable. Similar results are present for the lowest ranking systems; they worse systems were identically ranked with AHP and PM.
    publisherASCE
    titleApplicability of Different Decision-Making Methodologies for Selecting the Optimum Gravity System for a Medical Facility: A Case Study
    typeJournal Article
    journal volume28
    journal issue3
    journal titlePractice Periodical on Structural Design and Construction
    identifier doi10.1061/PPSCFX.SCENG-1255
    journal fristpage04023033-1
    journal lastpage04023033-18
    page18
    treePractice Periodical on Structural Design and Construction:;2023:;Volume ( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian