YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Valuing the Codesign of Streamflow Forecast and Reservoir Operation Models

    Source: Journal of Water Resources Planning and Management:;2023:;Volume ( 149 ):;issue: 008::page 04023037-1
    Author:
    Guang Yang
    ,
    Matteo Giuliani
    ,
    Stefano Galelli
    DOI: 10.1061/JWRMD5.WRENG-6023
    Publisher: ASCE
    Abstract: Seasonal streamflow forecasts are becoming widely used to improve water reservoir operations, especially in areas where climate teleconnections enable predictability on medium and long lead times. Most existing studies have focused on the assimilation of forecasts into operational decision models, an approach that typically banks on predeveloped forecasts to optimize water release decisions. However, this approach may overlook the potential synergies that stand in co-developing forecast and decision-making models. In other words, the opportunities that lie in coupling both forecast and operational decision models have not yet been explored. Here, we address this gap and contribute a novel approach building on the Evolutionary Multi-Objective Direct Policy Search algorithm to design forecast and decision-making models together. The proposed approach is benchmarked against operating policies not informed by any forecast, as well as by forecast-informed policies relying on predeveloped forecasts (data-driven and perfect). Numerical experiments are conducted on the Angat-Umiray water resources system, Philippines, which is operated primarily for ensuring municipal water supply to Metro Manila and irrigation supply to a large agricultural district. Our results show that the integrated design of forecast models and control policies provides a performance gain with respect to policies informed by predesigned forecasts. This result is particularly interesting because the skill of the integrated forecast models is lower than that of the predeveloped ones, thus suggesting that more accurate forecasts do not necessarily produce better water system operations. Overall, our analysis represents a step towards a deeper integration of streamflow forecast and reservoir operation models.
    • Download: (2.467Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Valuing the Codesign of Streamflow Forecast and Reservoir Operation Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296312
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorGuang Yang
    contributor authorMatteo Giuliani
    contributor authorStefano Galelli
    date accessioned2024-04-27T20:56:59Z
    date available2024-04-27T20:56:59Z
    date issued2023/08/01
    identifier other10.1061-JWRMD5.WRENG-6023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296312
    description abstractSeasonal streamflow forecasts are becoming widely used to improve water reservoir operations, especially in areas where climate teleconnections enable predictability on medium and long lead times. Most existing studies have focused on the assimilation of forecasts into operational decision models, an approach that typically banks on predeveloped forecasts to optimize water release decisions. However, this approach may overlook the potential synergies that stand in co-developing forecast and decision-making models. In other words, the opportunities that lie in coupling both forecast and operational decision models have not yet been explored. Here, we address this gap and contribute a novel approach building on the Evolutionary Multi-Objective Direct Policy Search algorithm to design forecast and decision-making models together. The proposed approach is benchmarked against operating policies not informed by any forecast, as well as by forecast-informed policies relying on predeveloped forecasts (data-driven and perfect). Numerical experiments are conducted on the Angat-Umiray water resources system, Philippines, which is operated primarily for ensuring municipal water supply to Metro Manila and irrigation supply to a large agricultural district. Our results show that the integrated design of forecast models and control policies provides a performance gain with respect to policies informed by predesigned forecasts. This result is particularly interesting because the skill of the integrated forecast models is lower than that of the predeveloped ones, thus suggesting that more accurate forecasts do not necessarily produce better water system operations. Overall, our analysis represents a step towards a deeper integration of streamflow forecast and reservoir operation models.
    publisherASCE
    titleValuing the Codesign of Streamflow Forecast and Reservoir Operation Models
    typeJournal Article
    journal volume149
    journal issue8
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/JWRMD5.WRENG-6023
    journal fristpage04023037-1
    journal lastpage04023037-11
    page11
    treeJournal of Water Resources Planning and Management:;2023:;Volume ( 149 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian