YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimum Design of Pendulum Tuned Mass Dampers Considering Control Performance Degradation from Damper Connection

    Source: Journal of Structural Engineering:;2023:;Volume ( 149 ):;issue: 012::page 04023163-1
    Author:
    Wenxi Wang
    ,
    Tianfu Yu
    ,
    Zhilin Yang
    ,
    Sheng Chen
    ,
    Xugang Hua
    ,
    Ou Yang
    DOI: 10.1061/JSENDH.STENG-12312
    Publisher: ASCE
    Abstract: Pendulum tuned mass dampers (PTMDs) are one of the most commonly used devices for high-rise structures to control large-amplitude vibrations due to dynamic excitations. In practice, the damper of PTMD usually connects the tuned mass to the location below the top floor rather than to the top floor, which is different from the case using a conventional tuned mass damper (TMD). Therefore, the classical optimal parametric formulas derived from the structure-conventional TMD model are not applicable to design the optimal parameters of PTMDs. In this paper, the simplified mechanical model of the structure-PTMD system is updated to consider the damper connection in practice. The fixed-points theory is employed to analytically derive the optimum design formulas for the PTMD by introducing the effect of modal shape. Moreover, the control effectiveness of the PTMD using the proposed method is studied. The control performance and robustness of the PTMD designed by the proposed method are compared to those designed by the classical optimum formulas under various dynamic loads. Finally, with the help of the performance degradation index (PDI), the control performance degradation of PTMD designed by classical formulas is quantified. The results show that the proposed optimal parameters have considerable differences from classical formulas. Through designing a PTMD on a multi-degree-of-freedom (MDOF) structure, the proposed optimum design is demonstrated to be more effective and robust than the classical formulas. To design a large mass ratio PTMD, the control performance degradation from the damper connection in practice is significant and should be seriously considered.
    • Download: (5.445Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimum Design of Pendulum Tuned Mass Dampers Considering Control Performance Degradation from Damper Connection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296225
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorWenxi Wang
    contributor authorTianfu Yu
    contributor authorZhilin Yang
    contributor authorSheng Chen
    contributor authorXugang Hua
    contributor authorOu Yang
    date accessioned2024-04-27T20:54:41Z
    date available2024-04-27T20:54:41Z
    date issued2023/12/01
    identifier other10.1061-JSENDH.STENG-12312.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296225
    description abstractPendulum tuned mass dampers (PTMDs) are one of the most commonly used devices for high-rise structures to control large-amplitude vibrations due to dynamic excitations. In practice, the damper of PTMD usually connects the tuned mass to the location below the top floor rather than to the top floor, which is different from the case using a conventional tuned mass damper (TMD). Therefore, the classical optimal parametric formulas derived from the structure-conventional TMD model are not applicable to design the optimal parameters of PTMDs. In this paper, the simplified mechanical model of the structure-PTMD system is updated to consider the damper connection in practice. The fixed-points theory is employed to analytically derive the optimum design formulas for the PTMD by introducing the effect of modal shape. Moreover, the control effectiveness of the PTMD using the proposed method is studied. The control performance and robustness of the PTMD designed by the proposed method are compared to those designed by the classical optimum formulas under various dynamic loads. Finally, with the help of the performance degradation index (PDI), the control performance degradation of PTMD designed by classical formulas is quantified. The results show that the proposed optimal parameters have considerable differences from classical formulas. Through designing a PTMD on a multi-degree-of-freedom (MDOF) structure, the proposed optimum design is demonstrated to be more effective and robust than the classical formulas. To design a large mass ratio PTMD, the control performance degradation from the damper connection in practice is significant and should be seriously considered.
    publisherASCE
    titleOptimum Design of Pendulum Tuned Mass Dampers Considering Control Performance Degradation from Damper Connection
    typeJournal Article
    journal volume149
    journal issue12
    journal titleJournal of Structural Engineering
    identifier doi10.1061/JSENDH.STENG-12312
    journal fristpage04023163-1
    journal lastpage04023163-18
    page18
    treeJournal of Structural Engineering:;2023:;Volume ( 149 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian