YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Model Study on the Time-Dependent Permeability of Rock Fractures Induced by Mechanical Creep

    Source: International Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 011::page 04023208-1
    Author:
    Xiaopeng Su
    ,
    Xiangyan Ren
    ,
    Lei Zhou
    ,
    Junchao Chen
    ,
    Xu Wei
    DOI: 10.1061/IJGNAI.GMENG-8568
    Publisher: ASCE
    Abstract: Fracture permeability is one of the critical factors affecting thermal production in hot dry rock reservoirs. Mechanical creep can cause temporal reduction of fracture permeability. However, the study solely on mechanical creep is limited, particularly under high confining stress. In addition, a physics-based stress- and time-dependent permeability model is essential for predicting the in situ geothermal production. This work aims to study the mechanical creep on the time-dependent fracture permeability. Long-term flow tests through single fractured granite samples under constant loading (20, 35, and 50 MPa, respectively) and stepwise increased loading (20 → 35 → 50 MPa) were conducted. The influence of the loading stress on the creep rate and the influence of the time on the permeability damage were quantitatively investigated. Based on the experimental data, a permeability model considering both stress and time effects was established based on viscous–elastic mechanics. According to the study, we obtained the following conclusions: (1) A higher constant confining stress can result in larger creep deformation, a larger damage ratio of hydraulic aperture (eh), and a longer duration of rapid reduction of eh. (2) The previously accumulated creep deformation can affect the subsequent time effect on the temporal evolution of eh when the loading stress changes, causing eh rapid reduction stage to weaken or disappear. (3) The transient creep behavior of eh can be described by the Kelvin creep model, and the maximum damage caused by the creep deformation is almost linearly proportional to the loading stress. The increase in stress caused by the bridging effect between adjacent contact asperities can dramatically reduce the creep rate. (4) The established permeability model can effectively predict the permeability with change in both stress and time considering the effect of accumulated creep deformation on the subsequent creep deformation, and it can be easily implemented in numerical simulation.
    • Download: (2.609Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Model Study on the Time-Dependent Permeability of Rock Fractures Induced by Mechanical Creep

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296156
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXiaopeng Su
    contributor authorXiangyan Ren
    contributor authorLei Zhou
    contributor authorJunchao Chen
    contributor authorXu Wei
    date accessioned2024-04-27T20:52:44Z
    date available2024-04-27T20:52:44Z
    date issued2023/11/01
    identifier other10.1061-IJGNAI.GMENG-8568.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296156
    description abstractFracture permeability is one of the critical factors affecting thermal production in hot dry rock reservoirs. Mechanical creep can cause temporal reduction of fracture permeability. However, the study solely on mechanical creep is limited, particularly under high confining stress. In addition, a physics-based stress- and time-dependent permeability model is essential for predicting the in situ geothermal production. This work aims to study the mechanical creep on the time-dependent fracture permeability. Long-term flow tests through single fractured granite samples under constant loading (20, 35, and 50 MPa, respectively) and stepwise increased loading (20 → 35 → 50 MPa) were conducted. The influence of the loading stress on the creep rate and the influence of the time on the permeability damage were quantitatively investigated. Based on the experimental data, a permeability model considering both stress and time effects was established based on viscous–elastic mechanics. According to the study, we obtained the following conclusions: (1) A higher constant confining stress can result in larger creep deformation, a larger damage ratio of hydraulic aperture (eh), and a longer duration of rapid reduction of eh. (2) The previously accumulated creep deformation can affect the subsequent time effect on the temporal evolution of eh when the loading stress changes, causing eh rapid reduction stage to weaken or disappear. (3) The transient creep behavior of eh can be described by the Kelvin creep model, and the maximum damage caused by the creep deformation is almost linearly proportional to the loading stress. The increase in stress caused by the bridging effect between adjacent contact asperities can dramatically reduce the creep rate. (4) The established permeability model can effectively predict the permeability with change in both stress and time considering the effect of accumulated creep deformation on the subsequent creep deformation, and it can be easily implemented in numerical simulation.
    publisherASCE
    titleExperimental and Model Study on the Time-Dependent Permeability of Rock Fractures Induced by Mechanical Creep
    typeJournal Article
    journal volume23
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/IJGNAI.GMENG-8568
    journal fristpage04023208-1
    journal lastpage04023208-11
    page11
    treeInternational Journal of Geomechanics:;2023:;Volume ( 023 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian