YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Belitic Calcium Sulfoaluminate Cement

    Source: Journal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011::page 04023422-1
    Author:
    Omkar Deo
    ,
    Neel Bhuskute
    ,
    Julio Paniagua
    ,
    Javier Guijosa
    ,
    Janeth Rivera
    ,
    Eric P. Bescher
    DOI: 10.1061/JMCEE7.MTENG-15950
    Publisher: ASCE
    Abstract: A new cement based on belitic calcium sulfoaluminate (BCSA) was investigated, which featured a unique combination of advantages such as fast setting time, increased tensile strength, and net positive expansion over conventional, commercial BCSA and portland cements. These advantages are achieved by combining commercially available BCSA and mixing the cement with pure, finely ground anhydrite. Mortar bars prepared using this new cement (referred to as supersulfated BCSA or SBCSA) achieve nearly seven times the expansion of conventional BCSA at 28 days. SBCSA concrete exhibits restrained and unrestrained expansions greater by nearly eight times compared with standard BCSA concrete at 28 days. The compressive and flexural strengths of SBCSA concretes are nearly 50% and up to 25% higher compared with BCSA, according to standard test methods. The use of cut-sheet continuously deformed steel fibers in the SBCSA concrete mixes at a dosage of 0.75% shows only minor improvements in terms of restrained expansions and flexural strengths. X-ray diffraction (XRD) analysis showed that the amount of ettringite increased by nearly 30%, and the hydration of belite is enhanced in SBCSA at 28 days compared with BCSA. Due to the unique combination of expansive and fast-setting characteristics, SBCSA offers a potential opportunity to improve the structural design of portland cement concrete. For example, the combination of high early strength and expansion allows the concrete to sustain expansions typically destructive in portland-based expansive cements.
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Belitic Calcium Sulfoaluminate Cement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4296129
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorOmkar Deo
    contributor authorNeel Bhuskute
    contributor authorJulio Paniagua
    contributor authorJavier Guijosa
    contributor authorJaneth Rivera
    contributor authorEric P. Bescher
    date accessioned2024-04-27T20:52:01Z
    date available2024-04-27T20:52:01Z
    date issued2023/11/01
    identifier other10.1061-JMCEE7.MTENG-15950.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296129
    description abstractA new cement based on belitic calcium sulfoaluminate (BCSA) was investigated, which featured a unique combination of advantages such as fast setting time, increased tensile strength, and net positive expansion over conventional, commercial BCSA and portland cements. These advantages are achieved by combining commercially available BCSA and mixing the cement with pure, finely ground anhydrite. Mortar bars prepared using this new cement (referred to as supersulfated BCSA or SBCSA) achieve nearly seven times the expansion of conventional BCSA at 28 days. SBCSA concrete exhibits restrained and unrestrained expansions greater by nearly eight times compared with standard BCSA concrete at 28 days. The compressive and flexural strengths of SBCSA concretes are nearly 50% and up to 25% higher compared with BCSA, according to standard test methods. The use of cut-sheet continuously deformed steel fibers in the SBCSA concrete mixes at a dosage of 0.75% shows only minor improvements in terms of restrained expansions and flexural strengths. X-ray diffraction (XRD) analysis showed that the amount of ettringite increased by nearly 30%, and the hydration of belite is enhanced in SBCSA at 28 days compared with BCSA. Due to the unique combination of expansive and fast-setting characteristics, SBCSA offers a potential opportunity to improve the structural design of portland cement concrete. For example, the combination of high early strength and expansion allows the concrete to sustain expansions typically destructive in portland-based expansive cements.
    publisherASCE
    titleA New Belitic Calcium Sulfoaluminate Cement
    typeJournal Article
    journal volume35
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/JMCEE7.MTENG-15950
    journal fristpage04023422-1
    journal lastpage04023422-11
    page11
    treeJournal of Materials in Civil Engineering:;2023:;Volume ( 035 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian